Identifying preflare spectral features using explainable artificial intelligence

被引:8
|
作者
Panos, Brandon [1 ,2 ]
Kleint, Lucia [1 ,2 ]
Zbinden, Jonas [1 ,2 ]
机构
[1] Univ Geneva, 7 Route Drize, CH-1227 Carouge, Switzerland
[2] Univ Bern, Astron Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
关键词
Key words. Sun; flares; -; techniques; spectroscopic; Sun; activity; chromosphere; methods; data analysis - methods; statistical; SOLAR-FLARES; ACTIVE-REGION; SPACE WEATHER; MODEL; INFORMATION; PHASE; I;
D O I
10.1051/0004-6361/202244835
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The prediction of solar flares is of practical and scientific interest; however, many machine learning methods used for this prediction task do not provide the physical explanations behind a model's performance. We made use of two recently developed explainable artificial intelligence techniques called gradient-weighted class activation mapping (Grad-CAM) and expected gradients (EG) to reveal the decision-making process behind a high-performance neural network that has been trained to distinguish between MgII spectra derived from flaring and nonflaring active regions, a fact that can be applied to the task of short timescale flare forecasting. The two techniques generate visual explanations (heatmaps) that can be projected back onto the spectra, allowing for the identification of features that are strongly associated with precursory flare activity. We automated the search for explainable interpretations on the level of individual wavelengths, and provide multiple examples of flare prediction using IRIS spectral data, finding that prediction scores in general increase before flare onset. Large IRIS rasters that cover a significant portion of the active region and coincide with small preflare brightenings both in IRIS and SDO/AIA images tend to lead to better forecasts. The models reveal that MgII triplet emission, flows, as well as broad and highly asymmetric spectra are all important for the task of flare prediction. Additionally, we find that intensity is only weakly correlated to a spectrum's prediction score, meaning that low intensity spectra can still be of great importance for the flare prediction task, and that $78$% of the time, the position of the model's maximum attention along the slit during the preflare phase is predictive of the location of the flare's maximum UV emission
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A Deep Diagnostic Framework Using Explainable Artificial Intelligence and Clustering
    Thunold, Havard Horgen
    Riegler, Michael A.
    Yazidi, Anis
    Hammer, Hugo L.
    Isomoto, Hajime
    Marquering, Henk A.
    DIAGNOSTICS, 2023, 13 (22)
  • [42] Improvement in Deep Networks for Optimization Using eXplainable Artificial Intelligence
    Lee, Jin Ha
    Shin, Ik Hee
    Jeong, Sang Gu
    Lee, Seung-Ik
    Zaheer, Muhamamad Zaigham
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 525 - 530
  • [43] Prediction of Complex Odor from Pig Barn Using Machine Learning and Identifying the Influence of Variables Using Explainable Artificial Intelligence
    Lee, Do-Hyun
    Lee, Sang-Hun
    Woo, Saem-Ee
    Jung, Min-Woong
    Kim, Do-yun
    Heo, Tae-Young
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [44] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    ADVANCED MATERIALS, 2024, 36 (25)
  • [45] Effects of Explainable Artificial Intelligence in Neurology
    Gombolay, G.
    Silva, A.
    Schrum, M.
    Dutt, M.
    Hallman-Cooper, J.
    Gombolay, M.
    ANNALS OF NEUROLOGY, 2023, 94 : S145 - S145
  • [46] Drug discovery with explainable artificial intelligence
    Jimenez-Luna, Jose
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE MACHINE INTELLIGENCE, 2020, 2 (10) : 573 - 584
  • [47] Explainable Artificial Intelligence for Combating Cyberbullying
    Tesfagergish, Senait Gebremichael
    Damasevicius, Robertas
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 54 - 67
  • [48] Drug discovery with explainable artificial intelligence
    José Jiménez-Luna
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2020, 2 : 573 - 584
  • [49] Explainable and responsible artificial intelligence PREFACE
    Meske, Christian
    Abedin, Babak
    Klier, Mathias
    Rabhi, Fethi
    ELECTRONIC MARKETS, 2022, 32 (04) : 2103 - 2106
  • [50] A Survey on Explainable Artificial Intelligence for Cybersecurity
    Rjoub, Gaith
    Bentahar, Jamal
    Wahab, Omar Abdel
    Mizouni, Rabeb
    Song, Alyssa
    Cohen, Robin
    Otrok, Hadi
    Mourad, Azzam
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 5115 - 5140