A numerical study on chloride transport in alkali-activated fly ash/slag concretes

被引:74
|
作者
Liu, Qing-feng [1 ,2 ]
Cai, Yuxin [1 ,2 ]
Peng, Hui [3 ]
Meng, Zhaozheng [1 ,2 ]
Mundra, Shishir [4 ]
Castel, Arnaud [5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Shanghai Key Lab Digital Maintenance Bldg & Infras, Shanghai 200240, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Peoples R China
[4] Swiss Fed Inst Technol, Inst Bldg Mat, CH-8093 Zurich, Switzerland
[5] Univ Technol Sydney, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金; 上海市自然科学基金; 瑞士国家科学基金会;
关键词
Alkali -activated concrete; Chloride transport; Corrosion initiation; Durability; Numerical model; INDUCED CORROSION; PORE STRUCTURE; ASH; SLAG; RESISTANCE; MODEL; WATER; PERMEABILITY; GEOPOLYMERS; PENETRATION;
D O I
10.1016/j.cemconres.2023.107094
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Alkali-activated binders for concrete composites are emerging as the available low-embodied-carbon alternatives to ordinary Portland cement (OPC). Despite decades of research, the durability of alkali-activated concrete remains a concern, especially the issues related to chloride penetration and the potential for chloride-induced corrosion of embedded steel bars. In this study, a multi-phase, multi-component ionic numerical model is developed to investigate the chloride transport in alkali-activated fly ash/slag (AAFS) concretes. The model framework considers the porosity of concrete, the chloride binding, and the electrochemical coupling between multi-species. Based on the proposed model, the parametric studies of a series of influencing factors on both chloride transport and initiation time of reinforcement corrosion are performed and discussed. The results indicate that the slag content and the water to binder ratio are the dominant factors affecting chloride penetration and corrosion initiation time of steel bars in AAFS concretes due to their greater contributions to reduce the porosity, while the aggregate volume fraction presents a limited effect compared with other factors. The transport model proposed in this study brings insights to the prediction of the service life of alkali-activated reinforced concrete structures.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes
    Humad, Abeer M.
    Kothari, Ankit
    Provis, John L.
    Cwirzen, Andrzej
    FRONTIERS IN MATERIALS, 2019, 6
  • [22] Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes
    Yang, Tao
    Zhu, Huajun
    Zhang, Zuhua
    Gao, Xuan
    Zhang, Changsen
    Wu, Qisheng
    CEMENT AND CONCRETE RESEARCH, 2018, 109 : 198 - 207
  • [23] Chloride binding mechanism and free chloride reduction method of alkali-activated slag/fly ash mixed with seawater
    Huang, Ziqing
    Guo, Menghuan
    Zhou, Yingwu
    Wang, Tiao
    Fang, Yuan
    Sui, Lili
    Gong, Guoqiang
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 409
  • [24] Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes
    Li, Zhenming
    Lu, Tianshi
    Liang, Xuhui
    Dong, Hua
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [25] DURABILITY PERFORMANCE OF ALKALI-ACTIVATED METAKAOLIN, SLAG, FLY ASH, AND HYBRIDS
    Jirasit, F.
    Ruescher, C. H.
    Lohaus, L.
    Chindaprasirt, P.
    DEVELOPMENTS IN STRATEGIC CERAMIC MATERIALS II, 2017, : 3 - 12
  • [26] MECHNICAL STRENGTH AND DURABILITY OF ALKALI-ACTIVATED FLY ASH/SLAG CONCRETE
    Chi, Maochieh
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2016, 24 (05): : 958 - 967
  • [27] Binding mechanism and properties of alkali-activated fly ash/slag mortars
    Chi, Maochieh
    Huang, Ran
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 291 - 298
  • [28] Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete
    Mosleh, Youssef A.
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 65 - 76
  • [29] Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes
    Puertas, F
    Fernández-Jiménez, A
    CEMENT & CONCRETE COMPOSITES, 2003, 25 (03): : 287 - 292
  • [30] Analysis of reaction degree and factors of alkali-activated fly ash/slag
    Wang, Bowen
    Liu, Yang
    Luo, Dong
    Yang, Yiwei
    Huang, Dunwen
    Peng, Hui
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (18) : 955 - 964