A novel P2/O3 composite cathode toward synergistic electrochemical optimization for sodium ion batteries

被引:29
|
作者
Feng, Jiameng [1 ]
Fang, De [1 ]
Yang, Zhe [1 ]
Zhong, Jianjian [1 ]
Zheng, Chaoliang [1 ]
Wei, Zhicheng [1 ]
Li, Jianling [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, State Key Lab Adv Met, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium ion battery; Layered oxides; P2/O3 two phases; Fe doping; Complementarity; LAYERED OXIDE CATHODES; PERFORMANCE; P2-TYPE; LITHIUM;
D O I
10.1016/j.jpowsour.2022.232292
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The P2-type and O3-type are the most common types of layered oxides. The P2-type is possessed with better air stability but lower capacity while the O3-type possesses higher capacity but poorer kinetic performance. Considering the complementarity of two phases, a series of P2/O3-Na0.80Li0.13Ni0.20FexMn0.67-xO2 (x = 0.05, 0.10, 0.15) are designed and successfully synthesized by Fe doping in this work. The consolidation of P2 and O3 structures in this layered oxide is clearly characterized by the X-ray diffraction (XRD) refinement. Surprisingly, the two-phase collaboration is well demonstrated in the superior electrochemical properties. When x = 0.15, Fe0.15-LNM reveals a high reversible capacity with 180.95 mAh.g(-1) and when x = 0.10, Fe0.10-LNM presents a good capacity retention with 88.60% after 100 cycles. Here it is the O3-P3 reversible phase transition and the redox of Fe that mainly provide the capacity during sodium ion de-embedding. Of note, the residual sodium salt on the surface is greatly reduced in the two-phase, which cuts down the occurrence of side reactions and improves the efficiency. This novel composite phase strategy facilitates the design of promising cathode materials with high capacity and long lifetime for sodium-ion batteries (SIBs) and other alkali metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Synthesis and electrochemical properties of Co-free P2/O3 biphasic Na1-xLixNi0.33Mn0.67O2 cathode material for sodium-ion batteries
    Feng, Jie
    Luo, Shao-hua
    Cong, Jun
    Li, Kun
    Yan, Shengxue
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    Lei, Xuefei
    Hou, Peng-qing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 916
  • [22] Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries
    Qi, Xingguo
    Liu, Lilu
    Song, Ningning
    Gao, Fei
    Yang, Kai
    Lu, Yaxiang
    Yang, Haitao
    Hu, Yong-Sheng
    Cheng, Zhao-Hua
    Chen, Liquan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) : 40215 - 40223
  • [23] Review-Research Progress on P2/O3-Composite Layer Metal Oxide Cathode Materials for Sodium-Ion Batteries
    Xu, Weiwei
    Zhou, Jiakun
    Zhang, Yanli
    Wang, Naixin
    Liu, Mengmeng
    Li, Xiaoning
    Zhou, Wenzhang
    Xie, Yanting
    Dai, Kehua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (12)
  • [24] P2/O3 biphasic Ni/Fe/Mn-based layered cathode with high capacity and great cyclability for sodium-ion batteries
    Zhang, Ningshuang
    Fan, Xiaoqi
    Tong, Yifan
    Wang, Mengya
    Ding, Hao
    Zhou, Junfei
    Li, Xin
    Zhao, Dongni
    Li, Shiyou
    IONICS, 2025, 31 (02) : 1483 - 1497
  • [25] Insights into dynamic structural evolution and its sodium storage mechanisms of P2/P3 composite cathode materials for sodium-ion batteries
    Liu, Yi-Feng
    Hu, Hai-Yan
    Zhu, Yan-Fang
    Peng, Dan-Ni
    Li, Jia-Yang
    Li, Yan-Jiang
    Su, Yu
    Tang, Rui-Ren
    Chou, Shu-Lei
    Xiao, Yao
    CHEMICAL COMMUNICATIONS, 2024, 60 (51) : 6496 - 6499
  • [26] A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries
    Chen, Xiaoli
    Song, Jiangping
    Li, Junsheng
    Zhang, Haining
    Tang, Haolin
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2021, 51 (04) : 619 - 627
  • [27] A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries
    Xiaoli Chen
    Jiangping Song
    Junsheng Li
    Haining Zhang
    Haolin Tang
    Journal of Applied Electrochemistry, 2021, 51 : 619 - 627
  • [28] A P2/O3 biphasic cathode material with highly reversibility synthesized by Sn-substitution for Na-ion batteries
    Li, Ranran
    Liu, Yanying
    Wang, Zhen
    Li, Jianling
    ELECTROCHIMICA ACTA, 2019, 318 : 14 - 22
  • [29] Constructing P2/O3 biphasic structure of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries
    Zhang, Ping
    Zhang, Guohua
    Liu, Yukun
    Fan, Yuxin
    Shi, Xinyue
    Dai, Yiming
    Gong, Shiwen
    Hou, Jingrong
    Ma, Jiwei
    Huang, Yunhui
    Zhang, Renyuan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 654 : 1405 - 1416
  • [30] Enhancing electrochemical performance of high-entropy Co/Ni-free P2/O3 hybrid-phase layered metal oxide cathode for sodium-ion batteries
    Zhang, Yixu
    Wang, Ruijuan
    Song, Wenhao
    Lei, Ming
    Zhang, Yuxin
    Lei, Zeyu
    Wei, Qiliang
    Zhang, Xiaoyan
    Wang, Xianyou
    CHEMICAL ENGINEERING JOURNAL, 2024, 500