Prediction of heating and cooling loads based on light gradient boosting machine algorithms

被引:52
|
作者
Guo, Jiaxin [1 ]
Yun, Sining [1 ,2 ]
Meng, Yao [1 ]
He, Ning [3 ]
Ye, Dongfu [2 ]
Zhao, Zeni [1 ]
Jia, Lingyun [1 ]
Yang, Liu [4 ]
机构
[1] Xian Univ Architecture & Technol, Sch Mat Sci & Engn, Xian 710055, Shaanxi, Peoples R China
[2] Qinghai Bldg & Mat Res Acad Co Ltd, Qinghai Prov Key Lab Plateau Green Bldg & Ecocommu, Xining 810000, Qinghai, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Shaanxi, Peoples R China
[4] Xian Univ Architecture & Technol, Coll Architecture, Xian 710055, Shaanxi, Peoples R China
关键词
Residential buildings; Machine learning; Feature selection; Hyperparameter optimization algorithm; Ensemble learning; ARTIFICIAL NEURAL-NETWORKS; RESIDENTIAL BUILDINGS; COMPRESSIVE STRENGTH; ENERGY;
D O I
10.1016/j.buildenv.2023.110252
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Machine learning models have been widely used to study the prediction of heating and cooling loads in resi-dential buildings. However, most of these methods use the default hyperparameters, resulting in inaccurate prediction accuracy. In this work, based on hyperparametric optimization algorithms of random search (Random), grid search (Grid), covariance matrix adaptive evolution strategy (CMA-ES), and tree-structured parzen estimator (TPE), were combined with the light gradient boosting machine (LightGBM) model, to construct four hybrid models (Random-LightGBM, Grid-LightGBM, CMA-ES-LightGBM and TPE-LightGBM) for improved prediction accuracy of heating and cooling loads. The LightGBM model was trained using a dataset consisting of building features, cooling set points, and occupant behavior parameters. Feature selection was performed by a random forest-based feature selection method, which determines the input features of the load prediction model. The TPE-LightGBM model achieved the best prediction accuracy among all proposed models with a root mean square error (RMSE) of 0.2714, mean absolute error (MAE) of 0.1416, coefficient of deter-mination (R2) of 0.9981, and mean absolute percentage error (MAPE) of 0.4699% for heating load prediction, and RMSE of 0.1901, MAE of 0.1394, R2 of 0.9924, and MAPE of 2.3509% for cooling load prediction. The proposed TPE-LightGBM model provides an efficient strategy for predicting heating and cooling loads, which can provide better energy efficiency measures at the early design stages of residential buildings.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine
    Rawi, Reda
    Mall, Raghvendra
    Kunji, Khalid
    Shen, Chen-Hsiang
    Kwong, Peter D.
    Chuang, Gwo-Yu
    BIOINFORMATICS, 2018, 34 (07) : 1092 - 1098
  • [42] Ensemble Learning for Short-Term Traffic Prediction Based on Gradient Boosting Machine
    Yang, Senyan
    Wu, Jianping
    Du, Yiman
    He, Yingqi
    Chen, Xu
    JOURNAL OF SENSORS, 2017, 2017
  • [43] Business Failure Prediction Based on a Cost-Sensitive Extreme Gradient Boosting Machine
    Zou, Yao
    Gao, Changchun
    Gao, Han
    IEEE ACCESS, 2022, 10 : 42623 - 42639
  • [44] Intrusion Detection Algorithm Based on Convolutional Neural Network and Light Gradient Boosting Machine
    Wang, Qian
    Zhao, Wenfang
    Wei, Xiaoyu
    Ren, Jiadong
    Gao, Yuying
    Zhang, Bing
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2022, 32 (08) : 1229 - 1245
  • [45] A Forest Fire Susceptibility Modeling Approach Based on Light Gradient Boosting Machine Algorithm
    Sun, Yanyan
    Zhang, Fuquan
    Lin, Haifeng
    Xu, Shuwen
    REMOTE SENSING, 2022, 14 (17)
  • [46] Prediction of the first 2+ states properties for atomic nuclei using light gradient boosting machine
    Liu, Hui
    Li, Xin-Xiang
    Yuan, Yun
    Luo, Wen
    Xu, Yi
    NUCLEAR SCIENCE AND TECHNIQUES, 2025, 36 (02)
  • [47] Prediction and optimization of heating and cooling loads for low energy buildings in Morocco: An application of hybrid machine learning methods
    Abdou, N.
    El Mghouchi, Y.
    Jraida, K.
    Hamdaoui, S.
    Hajou, A.
    Mouqallid, M.
    JOURNAL OF BUILDING ENGINEERING, 2022, 61
  • [48] Enhancing building energy efficiency: An integrated approach to predicting heating and cooling loads using machine learning and optimization algorithms
    Gao, Tianfei
    Han, Xu
    Wang, Jing
    Geng, Yichao
    Zhang, Hua
    Song, Tao
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [49] Regression tree ensemble learning-based prediction of the heating and cooling loads of residential buildings
    Nikhil Pachauri
    Chang Wook Ahn
    Building Simulation, 2022, 15 : 2003 - 2017
  • [50] Regression tree ensemble learning-based prediction of the heating and cooling loads of residential buildings
    Pachauri, Nikhil
    Ahn, Chang Wook
    BUILDING SIMULATION, 2022, 15 (11) : 2003 - 2017