Freestanding MXene-based macroforms for electrochemical energy storage applications

被引:34
|
作者
Lu, Qiongqiong [1 ]
Liu, Congcong [2 ]
Zhao, Yirong [2 ,3 ]
Pan, Wengao [1 ]
Xie, Kun [1 ]
Yue, Pengfei [1 ]
Zhang, Guoshang [1 ]
Omar, Ahmad [2 ]
Liu, Lixiang [4 ]
Yu, Minghao [5 ,6 ]
Mikhailova, Daria [2 ]
机构
[1] Henan Acad Sci, Inst Mat, Henan Key Lab Adv Cond Mat, Zhengzhou 450046, Henan, Peoples R China
[2] Leibniz Inst Solid State & Mat Res IFW Dresden eV, Dresden, Germany
[3] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou, Peoples R China
[4] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
[5] Tech Univ Dresden, Fac Chem & Food Chem, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
来源
SUSMAT | 2023年 / 3卷 / 04期
关键词
batteries; electrochemical energy storage; freestanding macroforms; MXenes; supercapacitors; TITANIUM CARBIDE MXENE; DENDRITE-FREE; CAPACITY ELECTRODE; ENGINEERED MXENE; RATIONAL DESIGN; ANODE MATERIALS; HYBRID FILMS; NB2CTX MXENE; PERFORMANCE; LI;
D O I
10.1002/sus2.151
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network, strong mechanical strength, and customizable surface chemistries derived from MXene nanosheets. This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets, strategies for structure design and surface medication, surface modification, and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures. The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications, offering a detailed discussion on the significant progress achieved thus far. Notably, the correlation between the macroform's structural attributes and its performance characteristics is thoroughly explored, shedding light on the critical factors influencing efficiency and durability. Despite the remarkable development, the review also highlights the existing challenges and presents future perspectives for freestanding MXene-based macroforms in the realms of high-performance energy storage devices. By addressing these challenges and leveraging emerging opportunities, the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.
引用
收藏
页码:471 / 497
页数:27
相关论文
共 50 条
  • [21] MXene: fundamentals to applications in electrochemical energy storage
    Ampong, Daniel Nframah
    Agyekum, Emmanuel
    Agyemang, Frank Ofori
    Mensah-Darkwa, Kwadwo
    Andrews, Anthony
    Kumar, Anuj
    Gupta, Ram K.
    DISCOVER NANO, 2023, 18 (01)
  • [22] A state-of-the-art review on MXene-based hybrid nanomaterial for energy storage applications
    Kanti, Praveen Kumar
    Jayan, K. Deepthi
    Wanatasanappan, V. Vicki
    Swapnalin, Jhilmil
    Sharma, Prabhakar
    Banerjee, Prasun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 997
  • [23] A Comprehensive Review of Mxene-Based Emerging Materials for Energy Storage Applications and Future Perspectives
    Eswaran, Surulivel Gokul
    Rashad, Mohamed
    Kumar, Alagarsamy Santhana Krishna
    EL-Mahdy, Ahmed F. M.
    CHEMISTRY-AN ASIAN JOURNAL, 2025, 20 (04)
  • [24] DFT practice in MXene-based materials for electrocatalysis and energy storage: From basics to applications
    Zhu, Haiding
    Liang, Zhuangzhuang
    Xue, Sensen
    Ren, Xuefeng
    Liang, Xingyou
    Xiong, Wei
    Gao, Liguo
    Liu, Anmin
    CERAMICS INTERNATIONAL, 2022, 48 (19) : 27217 - 27239
  • [25] A review on overcoming challenges and pioneering advances: MXene-based materials for energy storage applications
    Jangra, Sahil
    Kumar, Bhushan
    Sharma, Jaishree
    Sengupta, Shilpi
    Das, Subhankar
    Brajpuriya, R. K.
    Ohlan, Anil
    Mishra, Yogendra Kumar
    Goyat, M. S.
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [26] Emerging trends towards MXene-based electrolytes for electrochemical applications
    Kamarulazam, Fathiah
    Bashir, Shahid
    Ramesh, S.
    Ramesh, K.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 290
  • [27] Applications of doped-MXene-based materials for electrochemical energy storage
    Pham, Hau Quoc
    Huynh, Tai Thien
    COORDINATION CHEMISTRY REVIEWS, 2024, 517
  • [28] Recent Advances in MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices Applications
    Zhang, Jian
    Wang, Xiuchen
    Hang, Gege
    Wei, Ying
    Wang, Haoyu
    He, Sijia
    Liu, Zhe
    ACS APPLIED ELECTRONIC MATERIALS, 2023, : 4704 - 4725
  • [29] MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications
    Pabba, Durga Prasad
    Satthiyaraju, Mani
    Ramasdoss, Ananthakumar
    Sakthivel, Pandurengan
    Chidhambaram, Natarajan
    Dhanabalan, Shanmugasundar
    Abarzua, Carolina Venegas
    Morel, Mauricio J.
    Udayabhaskar, Rednam
    Mangalaraja, Ramalinga Viswanathan
    Aepuru, Radhamanohar
    Kamaraj, Sathish-Kumar
    Murugesan, Praveen Kumar
    Thirumurugan, Arun
    MICROMACHINES, 2023, 14 (06)
  • [30] MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices
    Levitt, Ariana
    Zhang, Jizhen
    Dion, Genevieve
    Gogotsi, Yury
    Razal, Joselito M.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (47)