Gamma-ray irradiation as an effective method for mitigating antibiotic resistant bacteria and antibiotic resistance genes in aquatic environments

被引:2
|
作者
Zhang, Ming-Qi [1 ,3 ]
Zhang, Xiao-Yong [1 ]
Zhang, Han -Chao [1 ]
Qiu, Hai -Bin [1 ]
Li, Zheng-Hao [1 ]
Xie, Dong-Hua [1 ,2 ]
Yuan, Li [1 ]
Sheng, Guo-Ping [1 ]
机构
[1] Univ Sci & Technol China, Dept Environm Sci & Engn, CAS Key Lab Urban Pollutant Convers, Hefei 230026, Peoples R China
[2] Anhui Jianzhu Univ, Coll Environm & Energy Engn, Anhui Prov Key Lab Environm Pollut Control & Resou, Hefei 230601, Peoples R China
[3] Minist Water Resources, Yellow River Conservancy Commiss, Yellow River Inst Hydraul Res, Zhengzhou 450003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Antibiotic resistance genes; Antibiotic resistant bacteria; Gamma-ray irradiation; Viable but nonculturable bacteria; Transformation; WASTE-WATER; FERMENTATION RESIDUES; IONIZING-RADIATION; REMOVAL; UV; PHOTOCATALYSIS; INACTIVATION; DEGRADATION; EFFICIENCY; OXIDATION;
D O I
10.1016/j.jhazmat.2024.133791
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The prevalence of antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (MWTPs) has emerged as a significant environmental concern. Despite advanced treatment processes, high levels of ARGs persist in the secondary effluent from MWTPs, posing ongoing environmental risks. This study explores the potential of gamma-ray irradiation as a novel approach for sterilizing antibiotic-resistant bacteria (ARB) and reducing ARGs in MWTP secondary effluent. Our findings reveal that gamma-ray irradiation at an absorbed dose of 1.6 kGy effectively deactivates all culturable bacteria, with no subsequent revival observed after exposure to 6.4 kGy and a 96-h incubation in darkness at room temperature. The removal efficiencies for a range of ARGs, including tetO, tetA, blaTEM-1, sulI, sulII, and tetW, were up to 90.5% with a 25.6 kGy absorbed dose. No resurgence of ARGs was detected after irradiation. Additionally, this study demonstrates a considerable reduction in the abundances of extracellular ARGs, with the transformation efficiencies of extracellular tetracycline and sulfadiazine resistance genes decreasing by 56.3-81.8% after 25.6 kGy irradiation. These results highlight the effectiveness of gamma-ray irradiation as an advanced and promising method for ARB sterilization and ARG
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Polyethylene microplastics decreased the chlorine disinfection efficacy of antibiotic resistant bacteria and antibiotic resistance genes
    Huang, Yingyue
    Yu, Miao
    Wang, Ziqi
    Sui, Minghao
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 61
  • [32] Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors
    Zhou, Shuai
    Xiong, Cong
    Su, Yinglong
    Wang, Yayi
    Gao, Yuanyuan
    Tang, Zhenping
    Liu, Boyang
    Wu, Yueyue
    Duan, Yi
    ENVIRONMENTAL POLLUTION, 2022, 304
  • [33] Assessing visitor use impact on antibiotic resistant bacteria and antibiotic resistance genes in soil and water environments of Rocky Mountain National Park
    Scott, Laura C.
    Wilson, Mark J.
    Esser, Scott M.
    Lee, Nicholas L.
    Wheeler, Michael E.
    Aubee, Alexandra
    Aw, Tiong Gim
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 785
  • [34] Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation
    Zhong, Jiexi
    Ahmed, Yunus
    Carvalho, Gilda
    Wang, Zhiliang
    Wang, Lianzhou
    Mueller, Jochen F.
    Guo, Jianhua
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [35] Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation
    Zhong, Jiexi
    Ahmed, Yunus
    Carvalho, Gilda
    Wang, Zhiliang
    Wang, Lianzhou
    Mueller, Jochen F.
    Guo, Jianhua
    Chemical Engineering Journal, 2022, 433
  • [36] Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments☆
    Zhang, Huanjun
    Xu, Linyun
    Hou, Xing
    Li, Yi
    Niu, Lihua
    Zhang, Jie
    Wang, Xixi
    ENVIRONMENTAL POLLUTION, 2024, 360
  • [37] Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent
    Li, Jiahuan
    Ren, Shaojie
    Qiu, Xiao
    Zhao, Shan
    Wang, Rui
    Wang, Yunkun
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (21) : 15120 - 15129
  • [38] Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences
    Voigt, A. M.
    Zacharias, N.
    Timm, C.
    Wasser, F.
    Sib, E.
    Skutlarek, D.
    Parcina, M.
    Schmithausen, R. M.
    Schwartz, T.
    Hembach, N.
    Tiehm, A.
    Stange, C.
    Engelhart, S.
    Bierbaum, G.
    Kistemann, T.
    Exner, M.
    Faerber, H. A.
    Schreiber, C.
    CHEMOSPHERE, 2020, 241 (241)
  • [39] Detection of antibiotic-resistant bacteria and their resistance genes from houseflies
    Akter, Sharmin
    Sabuj, Abdullah Al Momen
    Haque, Zobayda Farzana
    Rahman, Md Tanvir
    Kafi, Md Abdul
    Saha, Sukumar
    VETERINARY WORLD, 2020, 13 (02) : 266 - 274
  • [40] Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks
    Sib, E.
    Voigt, A. M.
    Wilbring, G.
    Schreiber, C.
    Faerber, H. A.
    Skutlarek, D.
    Parcina, M.
    Mahn, R.
    Wolf, D.
    Brossart, P.
    Geiser, F.
    Engelhart, S.
    Exner, M.
    Bierbaum, G.
    Schmithausen, R. M.
    INTERNATIONAL JOURNAL OF HYGIENE AND ENVIRONMENTAL HEALTH, 2019, 222 (04) : 655 - 662