Simulations of ammonia spray evaporation, cooling, mixture formation and combustion in a direct injection compression ignition engine

被引:28
|
作者
Lewandowski, Michal T. [1 ]
Pasternak, Michal [2 ]
Haugsv, Morten [1 ]
Lovas, Terese [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, Trondheim, Norway
[2] LOGE Polska Sp Zoo, Czestochowa, Poland
关键词
FUEL;
D O I
10.1016/j.ijhydene.2023.06.143
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the novel approach of direct liquid ammonia injection into the combustion chamber of a compression ignition engine. Unlike traditional gaseous ammonia port injection, this method shows promise in reducing ammonia slip and emissions. To simulate and analyze the behavior of the liquid ammonia spray, we employed numerical models based on existing literature on flashing and non-flashing spray simulations, as well as recent experimental studies on ammonia spray characteristics using a gasoline direct injection (GDI) injector. Our approach utilized a Lagrangian discrete phase modelling technique to perform a series of three-dimensional computational fluid dynamics (CFD) simulations. The primary objectives of this research were to evaluate the evaporation process of ammonia and its cooling effect, as well as to gain insights into mixture formation within the engine cylinder under different operating conditions. The simulations encompassed the entire engine cycle, considering a multi-hole GDI ammonia spray in conjunction with pilot n-heptane, a diesel surrogate, in equal proportions on an energy basis. Three distinct injection timings for ammonia were examined, leading to varying thermodynamic conditions within the combustion chamber during each spray formation. Consequently, different modelling parameters and initial conditions were necessary to accurately replicate the spray behavior. To address this, we proposed a systematic procedure for assigning pre-defined spray angles. The non-reacting, evaporating spray simulations yielded valuable insights into the mixture formation process, which guided our analysis. Finally, reacting conditions were considered to evaluate engine performance and resulting exhaust gas emissions. This study provides a comprehensive overview of critical aspects related to direct ammonia injection in internal combustion engine (ICE) systems. Moreover, it uncovers performance trends that can serve as a foundation for future investigations in this field. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页码:916 / 935
页数:20
相关论文
共 50 条
  • [31] COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE
    Aziz, A. Rashid A.
    Firmansyah
    Shahzad, Raja
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2010, 2 (01) : 157 - 170
  • [32] Combustion Optimization for Jet Ignition Direct Injection Gasoline Engine
    Zhao Z.
    Qi Y.
    Tian N.
    Zhang Y.
    Liu C.
    Yao Y.
    Wang Z.
    Wang, Zhi (wangzhi@tsinghua.edu.cn), 1631, SAE-China (43): : 1631 - 1637
  • [33] An experimental study of a direct injection compression ignition hydrogen engine
    Antunes, J. M. Gomes
    Mikalsen, R.
    Roskilly, A. P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) : 6516 - 6522
  • [34] Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine
    Sellnau, Mark
    Foster, Matthew
    Hoyer, Kevin
    Moore, Wayne
    Sinnamon, James
    Husted, Harry
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2014, 7 (02) : 835 - 851
  • [35] Engine performance and combustion characteristics of a direct injection compression ignition engine fueled waste cooking oil synthetic diesel
    Thanh Viet Nguyen
    Khanh Duc Nguyen
    Nang Xuan Ho
    Vinh Duy Nguyen
    International Journal of Coal Science & Technology, 2020, 7 : 560 - 570
  • [36] Engine performance and combustion characteristics of a direct injection compression ignition engine fueled waste cooking oil synthetic diesel
    Thanh Viet Nguyen
    Khanh Duc Nguyen
    Nang Xuan Ho
    Vinh Duy Nguyen
    INTERNATIONAL JOURNAL OF COAL SCIENCE & TECHNOLOGY, 2020, 7 (03) : 560 - 570
  • [37] Numerical analysis of flow, mixture formation and combustion in a direct injection natural gas engine
    Zhang, Xin
    Wang, Tao
    Zhang, Jibao
    Fuel, 2020, 259
  • [38] Numerical analysis of flow, mixture formation and combustion in a direct injection natural gas engine
    Zhang, Xin
    Wang, Tao
    Zhang, Jibao
    FUEL, 2020, 259
  • [39] A Numerical Simulation of Mixture Formation in a Hydrogen Direct-Injection Internal Combustion Engine
    Chen, Hao
    Zhao, Kai
    Luo, Linlei
    Ma, Zhihao
    Hu, Zhichao
    Li, Xin
    Qu, Pengcheng
    Pei, Yiqiang
    An, Yanzhao
    Gao, Zhang
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [40] Characterization of the ignition and combustion processes of spray injected by a hole-type nozzle for a direct-injection spark ignition engine
    Chen, Run
    Nishida, Keiya
    Kataoka, Hajime
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2014, 228 (06) : 617 - 630