Parameter Optimization and Performance Research: Radial Inflow Turbine in Ocean Thermal Energy Conversion

被引:2
|
作者
Wang, Yiming [1 ]
Chen, Yun [2 ]
Xue, Gang [2 ]
Zhang, Tianxu [1 ]
Liu, Yanjun [1 ,2 ]
机构
[1] Shandong Univ, Natl Demonstrat Ctr Expt Mech Engn Educ, Sch Mech Engn,Minist Educ, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Peoples R China
[2] Shandong Univ, Inst Marine Sci & Technol, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
ocean thermal energy conversion; radial inflow turbine; impeller sculpt; support vector machine; parameter optimization; OFF-DESIGN PERFORMANCE; WORKING FLUIDS; EXPANDERS;
D O I
10.3390/jmse11122293
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Combining one-dimensional parameter optimization and three-dimensional modeling optimization, a 30 kW radial inflow turbine for ocean thermal energy conversion was designed. In this paper, the effects of blade tip clearance, blade number, twist angle, and wheel-diameter ratio on the radial inflow turbine were analyzed. The results show that the model prediction method based on 3D numerical simulation data can effectively complete secondary optimization of the radial turbine rotor. The prediction model can be used to directly obtain the optimal modeling parameter of the rotor. The tip clearance, blade number, twist angle, wheel-diameter ratio, and shaft efficiency were found to be 0.273 mm, 16, 43.378 degrees, 0.241, and 88.467%, respectively. The optimized shaft efficiency of the turbine was found to be 2.239% higher than the one-dimensional design result, which is of great significance in reducing the system's power generation costs and promoting the application of this approach in engineering power generation using ocean thermal energy.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Organic Rankine Cycle Optimization With Explicit Designs of Evaporator and Radial Inflow Turbine
    Bekiloglu, Hasan Eren
    Bedir, Hasan
    Anlas, Gunay
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (07):
  • [42] Performance analysis of an absorption power cycle for ocean thermal energy conversion
    Yuan, Han
    Mei, Ning
    Zhou, Peilin
    ENERGY CONVERSION AND MANAGEMENT, 2014, 87 : 199 - 207
  • [43] OCEAN THERMAL ENERGY CONVERSION.
    Dugger, Gordon L.
    Astronautics and Aeronautics, 1975, 13 (11): : 58 - 63
  • [44] OCEAN THERMAL-ENERGY CONVERSION
    GRIEKSPOOR, W
    RESOURCES AND CONSERVATION, 1981, 7 (1-4): : 49 - 60
  • [45] OCEAN THERMAL-ENERGY CONVERSION
    FULLER, RD
    OCEAN MANAGEMENT, 1978, 4 (2-4): : 241 - 258
  • [46] Revisiting ocean thermal energy conversion
    Fujita, Rod
    Markham, Alexander C.
    Diaz Diaz, Julio E.
    Martinez Garcia, Julia Rosa
    Scarborough, Courtney
    Greenfield, Patrick
    Black, Peter
    Aguilera, Stacy E.
    MARINE POLICY, 2012, 36 (02) : 463 - 465
  • [47] OCEAN THERMAL-ENERGY CONVERSION
    MOORE, G
    ELECTRONICS AND POWER, 1987, 33 (10): : 649 - 652
  • [48] OCEAN THERMAL-ENERGY CONVERSION
    POLLARD, WG
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1979, 98 (01): : 10 - 10
  • [49] OCEAN THERMAL ENERGY CONVERSION.
    Pollard, William G.
    1978,
  • [50] OCEAN THERMAL-ENERGY CONVERSION
    KANE, WM
    MARINE TECHNOLOGY SOCIETY JOURNAL, 1978, 12 (05) : 36 - 36