Inversion of Bayesian networks

被引:1
|
作者
van Oostrum, Jesse [1 ]
van Hintum, Peter [2 ]
Ay, Nihat [1 ,3 ,4 ]
机构
[1] Hamburg Univ Technol, Inst Data Sci Fdn, Hamburg, Germany
[2] Univ Oxford, New Coll, Oxford, England
[3] Univ Leipzig, Leipzig, Germany
[4] Santa Fe Inst, Santa Fe, NM USA
关键词
Graphical models; Variational inference; Amortized inference; Bayesian networks; Variational autoencoder; Generative model; Recognition model;
D O I
10.1016/j.ijar.2023.109042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders and Helmholtz machines use a recognition network (encoder) to approximate the posterior distribution of a generative model (decoder). In this paper we establish some necessary and some sufficient properties of a recognition network so that it can model the true posterior distribution exactly. These results are derived in the general context of probabilistic graphical modelling / Bayesian networks, for which the network represents a set of conditional independence statements. We derive both global conditions, in terms of d-separation, and local conditions for the recognition network to have the desired qualities. It turns out that for the local conditions the perfectness property (for every node, all parents are joined) plays an important role.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] BAYESIAN APPROACH TO NONLINEAR INVERSION.
    Jackson, David D.
    Matsu'ura, Mitsuhiro
    Journal of Geophysical Research, 1985, 90 (B1): : 581 - 591
  • [32] Sparsity-promoting Bayesian inversion
    Kolehmainen, V.
    Lassas, M.
    Niinimaki, K.
    Siltanen, S.
    INVERSE PROBLEMS, 2012, 28 (02)
  • [33] SCALING LIMITS IN COMPUTATIONAL BAYESIAN INVERSION
    Schillings, Claudia
    Schwab, Christoph
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1825 - 1856
  • [34] Bayesian time-lapse inversion
    Buland, Arild
    El Ouair, Youness
    GEOPHYSICS, 2006, 71 (03) : R43 - R48
  • [35] Ultrafast current imaging by Bayesian inversion
    S. Somnath
    K. J. H. Law
    A. N. Morozovska
    P. Maksymovych
    Y. Kim
    X. Lu
    M. Alexe
    R. Archibald
    S. V. Kalinin
    S. Jesse
    R. K. Vasudevan
    Nature Communications, 9
  • [36] Bayesian Rotation Inversion of KIC 11145123
    Hatta, Yoshiki
    Sekii, Takashi
    Benomar, Othman
    Takata, Masao
    ASTROPHYSICAL JOURNAL, 2022, 927 (01):
  • [37] Bayesian linearized petrophysical AVO inversion
    Lang, Xiaozheng
    Grana, Dario
    GEOPHYSICS, 2018, 83 (03) : M1 - M13
  • [38] Varying prior information in Bayesian inversion
    Walker, Matthew
    Curtis, Andrew
    INVERSE PROBLEMS, 2014, 30 (06)
  • [39] Bayesian inversion of seabed reflection data
    Dosso, Stan. E.
    Holland, Charles. W.
    ACOUSTIC SENSING TECHNIQUES FOR THE SHALLOW WATER ENVIRONMENT: INVERSION METHODS AND EXPERIMENTS, 2006, : 17 - +
  • [40] Local Bayesian inversion: Theoretical developments
    Moraes, FS
    Scales, JA
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 141 (03) : 713 - 723