Inversion of Bayesian networks

被引:1
|
作者
van Oostrum, Jesse [1 ]
van Hintum, Peter [2 ]
Ay, Nihat [1 ,3 ,4 ]
机构
[1] Hamburg Univ Technol, Inst Data Sci Fdn, Hamburg, Germany
[2] Univ Oxford, New Coll, Oxford, England
[3] Univ Leipzig, Leipzig, Germany
[4] Santa Fe Inst, Santa Fe, NM USA
关键词
Graphical models; Variational inference; Amortized inference; Bayesian networks; Variational autoencoder; Generative model; Recognition model;
D O I
10.1016/j.ijar.2023.109042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders and Helmholtz machines use a recognition network (encoder) to approximate the posterior distribution of a generative model (decoder). In this paper we establish some necessary and some sufficient properties of a recognition network so that it can model the true posterior distribution exactly. These results are derived in the general context of probabilistic graphical modelling / Bayesian networks, for which the network represents a set of conditional independence statements. We derive both global conditions, in terms of d-separation, and local conditions for the recognition network to have the desired qualities. It turns out that for the local conditions the perfectness property (for every node, all parents are joined) plays an important role.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Bayesian Geophysical Inversion Using Invertible Neural Networks
    Zhang, Xin
    Curtis, Andrew
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (07)
  • [2] Solving inverse problems by Bayesian iterative inversion of Neural Networks
    Hwang, JN
    THEORETICAL ASPECTS OF NEURAL COMPUTATION: A MULTIDISCIPLINARY PERSPECTIVE, 1998, : 103 - 117
  • [3] Bayesian Dix inversion
    Buland, Arild
    Kolbjornsen, Odd
    Carter, Andrew J.
    GEOPHYSICS, 2011, 76 (02) : R15 - R22
  • [4] Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
    Jiang Fei-Bo
    Dai Qian-Wei
    Dong Li
    APPLIED GEOPHYSICS, 2016, 13 (02) : 267 - 278
  • [5] Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
    Fei-Bo Jiang
    Qian-Wei Dai
    Li Dong
    Applied Geophysics, 2016, 13 : 267 - 278
  • [6] Ultrasonic defect characterization using Bayesian inversion and scattering matrix denoising neural networks
    Guo, Changrong
    Ren, Junjie
    Xu, Jianfeng
    Bai, Long
    NDT & E INTERNATIONAL, 2023, 136
  • [7] Bayesian geoacoustic inversion for the inversion techniques 2001 workshop
    Lapinski, ALS
    Dosso, SE
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2003, 28 (03) : 380 - 393
  • [8] Bayesian inversion and uncertainty analysis
    Zhang, Nuoya
    Sun, Huaifeng
    Liu, Dong
    Liu, Shangbin
    NEAR SURFACE GEOPHYSICS, 2024, 22 (04) : 490 - 510
  • [9] Bayesian inversion of Stokes profiles
    Ramos, A. Asensio
    González, M. J. Martínez
    Rubiño-Martín, A.
    Astronomy and Astrophysics, 2007, 476 (02): : 959 - 970
  • [10] Bayesian Inversion of Stokes Profiles
    Asensio Ramos, A.
    Gonzalez, M. J. Martinez
    Rubino-Martin, J. A.
    SOLAR POLARIZATION 5: IN HONOR OF JAN OLOF STENFLO, 2009, 405 : 315 - +