Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

被引:2
|
作者
Cui, Ting [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Input nonlinear model; Parameter estimation; Multivariable system; Over-parameterization; Coupling identification; SUBSPACE IDENTIFICATION; FAULT-DIAGNOSIS; MODEL; OPTIMIZATION; CRITERION; TRACKING; NETWORK; DESIGN;
D O I
10.1007/s11071-023-08259-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.
引用
收藏
页码:8477 / 8496
页数:20
相关论文
共 50 条
  • [31] A Parameter Estimation Approach to State Observation of Nonlinear Systems
    Ortega, R.
    Bobtsov, A.
    Pyrkin, A.
    Aranovskiy, S.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6336 - 6341
  • [32] A method for simultaneous state and parameter estimation in nonlinear systems
    Haessig, D
    Friedland, B
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 947 - 951
  • [33] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 74 - 86
  • [34] Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems
    Wang, Xuehai
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (10): : 4749 - 4764
  • [35] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    Chemical Engineering Research and Design, 2022, 181 : 74 - 86
  • [36] A parameter estimation approach to state observation of nonlinear systems
    Ortega, Romeo
    Bobtsov, Alexey
    Pyrkin, Anton
    Aranovskiy, Stanislav
    SYSTEMS & CONTROL LETTERS, 2015, 85 : 84 - 94
  • [37] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Lorenz Josue Oliva-Gonzalez
    Rafael Martínez-Guerra
    Nonlinear Dynamics, 2024, 112 : 6379 - 6402
  • [38] A Particle Filter Approach to Robust State Estimation for a Class of Nonlinear Systems with Stochastic Parameter Uncertainty
    Kim, Sehoon
    Won, Sangchul
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (05) : 1194 - 1200
  • [39] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Oliva-Gonzalez, Lorenz Josue
    Martinez-Guerra, Rafael
    NONLINEAR DYNAMICS, 2024, 112 (08) : 6379 - 6402
  • [40] State estimation strategy for a class of nonlinear algebro-differential parameter-varying systems
    Zetina-Rios, I. I.
    Osorio-Gordillo, G. L.
    Alma, M.
    Darouach, M.
    Vargas-Mendez, R. -A.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (16) : 3085 - 3097