Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

被引:2
|
作者
Cui, Ting [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Input nonlinear model; Parameter estimation; Multivariable system; Over-parameterization; Coupling identification; SUBSPACE IDENTIFICATION; FAULT-DIAGNOSIS; MODEL; OPTIMIZATION; CRITERION; TRACKING; NETWORK; DESIGN;
D O I
10.1007/s11071-023-08259-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.
引用
收藏
页码:8477 / 8496
页数:20
相关论文
共 50 条