On the cancellation problem for L-algebras

被引:1
|
作者
Ruan, Xianglong [1 ]
Liu, Xiaochuan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Cartesian product; cancellation law; cancellable L-algebra; BAXTER; LAW;
D O I
10.1142/S0219498825500069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the cancellation problem for the cartesian product of L-algebras. Firstly, we show that L-algebras with prime element 0 and L-algebras satisfying the condition (C) are cancellable. Furthermore, we also prove that the wedge-sum of cancellable L-algebras is cancellable and each L-algebra can be embedded into a cancellable L-algebra. Finally, we give a class of L-algebras satisfying the cancellation law which is different from the above L-algebras.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The extension of L-algebras and states
    Mao, Lingling
    Xin, Xiaolong
    Zhang, Shunli
    FUZZY SETS AND SYSTEMS, 2023, 455 : 35 - 52
  • [22] A class of cancellable L-algebras
    Ruan, Xianglong
    SOFT COMPUTING, 2024, 28 (02) : 883 - 886
  • [23] ON THE ENUMERATION OF FINITE L-ALGEBRAS
    Dietzel, C.
    Menchon, P.
    Vendramin, L.
    MATHEMATICS OF COMPUTATION, 2023, 92 (341) : 1363 - 1381
  • [24] Some results on L-algebras
    Mona Aaly Kologani
    Soft Computing, 2023, 27 : 13765 - 13777
  • [25] POST L-ALGEBRAS AND RINGS
    YAQUB, FM
    MATHEMATISCHE NACHRICHTEN, 1981, 101 : 91 - 99
  • [26] Some results on L-algebras
    Kologani, Mona Aaly
    SOFT COMPUTING, 2023, 27 (19) : 13765 - 13777
  • [27] Order topologies on l-algebras
    Montalvo, F
    Pulgarín, A
    Requejo, B
    TOPOLOGY AND ITS APPLICATIONS, 2004, 137 (1-3) : 225 - 236
  • [28] Pseudo-MV algebras as L-algebras
    Yang, Yichuan
    Rump, Wolfgang
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 19 (5-6) : 621 - 632
  • [29] The geometry of discrete L-algebras
    Rump, Wolfgang
    ADVANCES IN GEOMETRY, 2023, 23 (04) : 543 - 565
  • [30] A class of cancellable L-algebras
    Xianglong Ruan
    Soft Computing, 2024, 28 : 883 - 886