Influences of Milling Time and NbC on Microstructure of AlCoCrFeNi2.1 High Entropy Alloy by Mechanical Alloying

被引:3
|
作者
Li, Li [1 ]
Jiang, Hui [1 ,2 ]
Ni, Zhiliang [1 ]
Han, Kaiming [1 ]
Wang, Rui [1 ]
Wang, Haixia [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Peoples R China
[2] Yangzhou Fengming Photoelect New Mat Co Ltd, Yangzhou 225200, Peoples R China
基金
中国国家自然科学基金;
关键词
eutectic high entropy alloy; mechanical alloying; alloying behavior; grain size; HIGH-DUCTILITY; HIGH-STRENGTH;
D O I
10.1007/s11595-023-2713-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) and AlCoCrFeNi2.1-xNbC (x=2.5wt%, 5.0wt%, 7.5wt%, and 10wt%) high entropy alloy (HEAs) were prepared by mechanical alloying (MA). The effects of milling time and NbC content on the alloying behavior and grain size of the AlCoCrFeNi2.1 EHEA were investigated. The experimental results show that the AlCoCrFeNi2.1 EHEA primarily consists of order BCC (B2) and face-centered-cubic (FCC) phases, while the AlCoCrFeNi2.1-xNbC (x=2.5wt%, 5.0wt%, 7.5wt%, and 10wt%) HEAs are composed of B2, FCC, and NbC phases. With the increase of milling time, the powder goes through three stages, irregularity, cold welding fracture and spheroidization. The particle size of AlCoCrFeNi2.1 EHEA powder shows a trend of first increasing and then decreasing. Therein, the particle size presents a normal distribution during 0-50 h alloying. With the addition of NbC, the AlCoCrFeNi2.1-xNbC HEAs powders are significantly refined. And the degree of grain refinement gradually increases with the increase of NbC content.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 50 条
  • [31] Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy
    Li, Peng
    Sun, Haotian
    Wang, Shuai
    Hao, Xiaohu
    Dong, Honggang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 814 (814)
  • [32] Effects of Different Rolling Temperatures on Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy
    Zhou Z.
    Wang Z.
    Jiao S.
    Cao R.
    Cailiao Daobao/Materials Reports, 2023, 37 (16):
  • [33] Understanding the microstructure evolution characteristics and mechanical properties of an AlCoCrFeNi2.1 high entropy alloy fabricated by laser energy deposition
    Guo, Weimin
    Zhang, Yan
    Ding, Ning
    Liu, Long
    Xu, Huixia
    Xu, Na
    Tian, Linan
    Liu, Guoqiang
    Dong, Dexiao
    Wang, Xiebin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [34] Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy
    Lozinko, Adrianna
    Gholizadeh, Reza
    Zhang, Yubin
    Klement, Uta
    Tsuji, Nobuhiro
    Mishin, Oleg, V
    Guo, Sheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [35] The microstructure and mechanical properties of the laser-welded joints of as-hot rolled AlCoCrFeNi2.1 high entropy alloy
    He, Lei
    Wei, Wei
    Zhang, He
    Lin, Dan
    Wu, Fufa
    Su, Hai
    Yang, Xinhua
    MATERIALS CHARACTERIZATION, 2024, 217
  • [36] Effect of severe cold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy
    Wani, I. S.
    Bhattacharjee, T.
    Sheikh, S.
    Lu, Y.
    Chatterjee, S.
    Guo, S.
    Bhattacharjee, P. P.
    Tsuji, N.
    7TH INTERNATIONAL CONFERENCE ON NANOMATERIALS BY SEVERE PLASTIC DEFORMATION, 2017, 194
  • [37] Microstructure and mechanical properties of high strength AlCoCrFeNi2.1 eutectic high entropy alloy prepared by selective laser melting (SLM)
    Wang, Shuai
    Li, Yang
    Zhang, Di
    Yang, Yue
    Manladan, Sunusi Marwana
    Luo, Zhen
    MATERIALS LETTERS, 2022, 310
  • [38] Revealing the nano-grained microstructure and mechanical properties of electrochemical boronized AlCoCrFeNi2.1 eutectic high entropy alloy
    Dong, Jianxin
    Wu, Hongxing
    Chen, Ying
    Li, Pengfei
    Zhang, Fan
    Wu, Yunjie
    Hua, Ke
    Wang, Haifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [39] Nanocomposite AlCoCrFeNi2.1 high-entropy alloy produced by FSP
    Mobarakeh, Seyed Ali Erfani
    Dehghani, Kamran
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 19 : 765 - 778
  • [40] Thermal stability, microstructure and texture evolution of thermomechanical processed AlCoCrFeNi2.1 eutectic high entropy alloy
    Asoushe, M. H.
    Hanzaki, A. Zarei
    Abedi, H. R.
    Mirshekari, B.
    Wegener, T.
    Sajadifar, S., V
    Niendorf, T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 799