Fine-Grained Entity Typing With a Type Taxonomy: A Systematic Review

被引:6
|
作者
Wang, Ruili [1 ]
Hou, Feng [1 ]
Cahan, Steven F. [2 ]
Chen, Li [2 ]
Jia, Xiaoyun [1 ]
Ji, Wanting [1 ]
机构
[1] Massey Univ, Sch Math & Computat Sci, Auckland 0632, New Zealand
[2] Univ Auckland, Auckland 1010, New Zealand
关键词
Semantics; Task analysis; Taxonomy; Joining processes; Ontologies; Natural language processing; Training; Entity analysis; fine-grained entity typing; semantic types; type taxonomy; knowledge base; KNOWLEDGE-BASE; LINKING;
D O I
10.1109/TKDE.2022.3148980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained entity typing (FGET) is an important natural language processing (NLP) task. It is to assign fine-grained semantic types of a type taxonomy (e.g., Person/artist/actor) to entity mentions. Fine-grained entity semantic types have been successfully applied in many natural language processing applications, such as relation extraction, entity linking and question answering. The key challenge for FGET is how to deal with label noises that disperse in corpora since the corpora are normally automatically annotated. Various type taxonomies, typing methods and representation learning approaches for FGET have been proposed and developed in the past two decades. This paper systematically categorizes and reviews these various typing methods and representation learning approaches to provide a reference for future studies on FGET. We also present a comprehensive review of type taxonomies, resources, applications for FGET and methods for automatically generating FGET training corpora. Furthermore, we identify the current trends in FGET research and discuss future research directions for FGET. To the best of our knowledge, this is the first comprehensive review of FGET.
引用
收藏
页码:4794 / 4812
页数:19
相关论文
共 50 条
  • [41] Hierarchical Modeling of Label Dependency and Label Noise in Fine-grained Entity Typing
    Wu, Junshuang
    Zhang, Richong
    Mao, Yongyi
    Shahrbabak, Masoumeh Soflaei
    Huai, Jinpeng
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3950 - 3956
  • [42] Fine-Grained Entity Typing via Hierarchical Multi Graph Convolutional Networks
    Jin, Hailong
    Hou, Lei
    Li, Juanzi
    Dong, Tiansi
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4969 - 4978
  • [43] A Neighborhood-Attention Fine-grained Entity Typing for Knowledge Graph Completion
    Zhuo, Jianhuan
    Zhu, Qiannan
    Yue, Yinliang
    Zhao, Yuhong
    Han, Weisi
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1525 - 1533
  • [44] Path-Based Attention Neural Model for Fine-Grained Entity Typing
    Zhang, Denghui
    Li, Manling
    Cai, Pengshan
    Jia, Yantao
    Wang, Yuanzhuo
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8179 - 8180
  • [45] Fine-grained Entity Type Classification Based on Transfer Learning
    Feng J.-Z.
    Ma X.-C.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (08): : 1759 - 1766
  • [46] Generating Fine-Grained Open Vocabulary Entity Type Descriptions
    Bhowmik, Rajarshi
    de Melo, Gerard
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 877 - 888
  • [47] A fine-grained taxonomy of code review feedback in TypeScript projects
    Davila, Nicole
    Nunes, Ingrid
    Wiese, Igor
    EMPIRICAL SOFTWARE ENGINEERING, 2025, 30 (02)
  • [48] Fine-Grained Evaluation for Entity Linking
    Rosales-Mendez, Henry
    Hogan, Aidan
    Poblete, Barbara
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 718 - 727
  • [49] FgER: Fine-Grained Entity Recognition
    Abhishek
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8008 - 8009
  • [50] Incorporating Object-Level Visual Context for Multimodal Fine-Grained Entity Typing
    Zhang, Ying
    Fan, Wenbo
    Song, Kehui
    Zhao, Yu
    Sui, Xuhui
    Yuan, Xiaojie
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 15380 - 15390