On the Convergence of a Novel Time-Slicing Approximation Scheme for Feynman Path Integrals

被引:0
|
作者
Trapasso, Salvator Ivan [1 ]
机构
[1] Univ Genoa, MaLGa Ctr, Dept Math, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
PSEUDODIFFERENTIAL-OPERATORS; ALGEBRAS; PHASE; SPACE;
D O I
10.1093/imrn/rnac179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we study the properties of a sequence of approximate propagators for the Schrodinger equation, in the spirit of Feynman's path integrals. Precisely, we consider Hamiltonian operators arising as the Weyl quantization of a quadratic form in phase space, plus a bounded potential perturbation in the form of a pseudodifferential operator with a rough symbol. The corresponding Schrodinger propagator belongs to the class of generalized metaplectic operators, a fact that naturally motivates the introduction of a manageable time-slicing approximation scheme consisting of operators of the same type. By leveraging on this design and techniques of wave packet analysis we are able to prove several convergence results with precise rates in terms of the mesh size of the time slicing subdivision, even stronger then those that can be achieved under the same assumptions using the standard Trotter approximation scheme. In particular, we prove convergence in the norm operator topology in L-2, as well as pointwise convergence of the corresponding integral kernels for non-exceptional times.
引用
收藏
页码:11930 / 11961
页数:32
相关论文
共 50 条