Spectral subspaces of Sturm-Liouville operators and variable bandwidth

被引:1
|
作者
Celiz, Mark Jason [1 ]
Groechenig, Karlheinz [2 ]
Klotz, Andreas [2 ]
机构
[1] Univ Philippines, Inst Math, Quezon City 1101, Philippines
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Paley-Wiener space; Reproducing kernel Hilbert space; Sampling; Density condition; Sturm-Liouville theory; Spectral theory; INTERPOLATION; DENSITY; KERNEL;
D O I
10.1016/j.jmaa.2024.128225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study spectral subspaces of the Sturm-Liouville operator f bar right arrow -(pf')' on R, where p is a positive, piecewise constant function. Functions in these subspaces can be thought of as having a local bandwidth determined by 1/root p. Using the spectral theory of Sturm-Liouville operators, we make the reproducing kernel of these spectral subspaces more explicit and compute it completely in certain cases. As a contribution to sampling theory, we then prove necessary density conditions for sampling and interpolation in these subspaces and determine the critical density that separates sets of stable sampling from sets of interpolation. (c) 2024 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Numerical computation of eigenvalues in spectral gaps of Sturm-Liouville operators
    Aceto, L
    Ghelardoni, P
    Marletta, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 453 - 470
  • [22] Inverse spectral problems for Sturm-Liouville operators with partial information
    Wang, Yu Ping
    Shieh, Chung Tsun
    Ma, Yan Ting
    APPLIED MATHEMATICS LETTERS, 2013, 26 (12) : 1175 - 1181
  • [23] Spectral properties of Sturm-Liouville operators in the space of vector functions
    Valeev, NF
    Sultanaev, YT
    MATHEMATICAL NOTES, 1999, 65 (5-6) : 781 - 786
  • [24] The spectral ζ-function for quasi-regular Sturm-Liouville operators
    Fucci, Guglielmo
    Piorkowski, Mateusz
    Stanfill, Jonathan
    LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (01)
  • [25] Limiting eigenfunctions of Sturm-Liouville operators subject to a spectral flow
    Beck, Thomas
    Bors, Isabel
    Conte, Grace
    Cox, Graham
    Marzuola, Jeremy L.
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 249 - 269
  • [26] Inverse spectral theory for Sturm-Liouville operators with distributional potentials
    Eckhardt, Jonathan
    Gesztesy, Fritz
    Nichols, Roger
    Teschl, Gerald
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 801 - 828
  • [27] EXTENSIONS, DILATIONS AND SPECTRAL ANALYSIS OF SINGULAR STURM-LIOUVILLE OPERATORS
    Allahverdiev, Bilender P.
    MATHEMATICAL REPORTS, 2017, 19 (02): : 225 - 243
  • [28] The Inverse Spectral Problem for the Sturm-Liouville Operators with Discontinuous Coefficients
    A. I. Shestakov
    Siberian Mathematical Journal, 2003, 44 : 891 - 907
  • [29] SPECTRAL ANALYSIS OF q-FRACTIONAL STURM-LIOUVILLE OPERATORS
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [30] Spectral theory of Sturm-Liouville operators approximation by regular problems
    Weidmann, J
    Sturm-Liouville Theory: Past and Present, 2005, : 75 - 98