Spectral subspaces of Sturm-Liouville operators and variable bandwidth

被引:1
|
作者
Celiz, Mark Jason [1 ]
Groechenig, Karlheinz [2 ]
Klotz, Andreas [2 ]
机构
[1] Univ Philippines, Inst Math, Quezon City 1101, Philippines
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Paley-Wiener space; Reproducing kernel Hilbert space; Sampling; Density condition; Sturm-Liouville theory; Spectral theory; INTERPOLATION; DENSITY; KERNEL;
D O I
10.1016/j.jmaa.2024.128225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study spectral subspaces of the Sturm-Liouville operator f bar right arrow -(pf')' on R, where p is a positive, piecewise constant function. Functions in these subspaces can be thought of as having a local bandwidth determined by 1/root p. Using the spectral theory of Sturm-Liouville operators, we make the reproducing kernel of these spectral subspaces more explicit and compute it completely in certain cases. As a contribution to sampling theory, we then prove necessary density conditions for sampling and interpolation in these subspaces and determine the critical density that separates sets of stable sampling from sets of interpolation. (c) 2024 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:30
相关论文
共 50 条