A scalable approach to characterize pleiotropy across thousands of human diseases and complex traits using GWAS summary statistics

被引:3
|
作者
Zhang, Zixuan [1 ]
Jung, Junghyun [1 ]
Kim, Artem [1 ]
Suboc, Noah [1 ]
Gazal, Steven [1 ,2 ,3 ]
Mancuso, Nicholas [1 ,2 ,3 ]
机构
[1] Univ Southern Calif, Ctr Genet Epidemiol, Keck Sch Med, Dept Populat & Publ Hlth Sci, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Dept Quantitat & Computat Biol, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Norris Comprehens Canc Ctr, Keck Sch Med, Los Angeles, CA 90007 USA
基金
美国国家卫生研究院;
关键词
HERITABILITY; ADULT; HMGA2; INFLAMMATION; ASSOCIATION; RISK; GENE;
D O I
10.1016/j.ajhg.2023.09.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWASs) across thousands of traits have revealed the pervasive pleiotropy of trait-associated genetic variants. While methods have been proposed to characterize pleiotropic components across groups of phenotypes, scaling these approaches to ultra-large-scale biobanks has been challenging. Here, we propose FactorGo, a scalable variational factor analysis model to identify and characterize pleiotropic components using biobank GWAS summary data. In extensive simulations, we observe that FactorGo outperforms the state-of-the-art (model-free) approach tSVD in capturing latent pleiotropic factors across phenotypes while maintaining a similar computational cost. We apply FactorGo to estimate 100 latent pleiotropic factors from GWAS summary data of 2,483 phenotypes measured in European-ancestry Pan-UK BioBank individuals (N 1/4 420,531). Next, we find that factors from FactorGo are more enriched with relevant tissue-specific annotations than those identified by tSVD (p 1/4 2.58E-10) and validate our approach by recapitulating brain-specific enrichment for BMI and the height-related connection between reproductive system and muscular-skeletal growth. Finally, our analyses suggest shared etiologies between rheumatoid arthritis and periodontal condition in addition to alkaline phosphatase as a candidate prognostic biomarker for prostate cancer. Overall, FactorGo improves our biological understanding of shared etiologies across thousands of GWASs.
引用
收藏
页码:1863 / 1874
页数:12
相关论文
共 43 条
  • [21] Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
    Jian Yang
    Teresa Ferreira
    Andrew P Morris
    Sarah E Medland
    Pamela A F Madden
    Andrew C Heath
    Nicholas G Martin
    Grant W Montgomery
    Michael N Weedon
    Ruth J Loos
    Timothy M Frayling
    Mark I McCarthy
    Joel N Hirschhorn
    Michael E Goddard
    Peter M Visscher
    Nature Genetics, 2012, 44 : 369 - 375
  • [22] Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
    Yang, Jian
    Ferreira, Teresa
    Morris, Andrew P.
    Medland, Sarah E.
    Madden, Pamela A. F.
    Heath, Andrew C.
    Martin, Nicholas G.
    Montgomery, Grant W.
    Weedon, Michael N.
    Loos, Ruth J.
    Frayling, Timothy M.
    McCarthy, Mark I.
    Hirschhorn, Joel N.
    Goddard, Michael E.
    Visscher, Peter M.
    NATURE GENETICS, 2012, 44 (04) : 369 - U170
  • [23] A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics
    Zhou, Geyu
    Zhao, Hongyu
    PLOS GENETICS, 2021, 17 (07):
  • [24] Improving on polygenic scores across complex traits using select and shrink with summary statistics (S4) and LDpred2
    Tyrer, Jonathan P.
    Peng, Pei-Chen
    Devries, Amber A.
    Gayther, Simon A.
    Jones, Michelle R.
    Pharoah, Paul D.
    BMC GENOMICS, 2024, 25 (01):
  • [25] Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits
    Bakshi, Andrew
    Zhu, Zhihong
    Vinkhuyzen, Anna A. E.
    Hill, W. David
    Mcrae, Allan F.
    Visscher, Peter M.
    Yang, Jian
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits
    Andrew Bakshi
    Zhihong Zhu
    Anna A. E. Vinkhuyzen
    W. David Hill
    Allan F. McRae
    Peter M. Visscher
    Jian Yang
    Scientific Reports, 6
  • [27] Admixture mapping as a gene discovery approach for complex human traits and diseases
    Caroline M. Nievergelt
    Nicholas J. Schork
    Current Hypertension Reports, 2005, 7 : 31 - 37
  • [28] Admixture mapping as a gene discovery approach for complex human traits and diseases
    Nievergelt, CM
    Schork, NJ
    CURRENT HYPERTENSION REPORTS, 2005, 7 (01) : 31 - 37
  • [29] Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits
    Zhang, Yan
    Qi, Guanghao
    Park, Ju-Hyun
    Chatterjee, Nilanjan
    NATURE GENETICS, 2018, 50 (09) : 1318 - +
  • [30] Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits
    Yan Zhang
    Guanghao Qi
    Ju-Hyun Park
    Nilanjan Chatterjee
    Nature Genetics, 2018, 50 : 1318 - 1326