A scalable approach to characterize pleiotropy across thousands of human diseases and complex traits using GWAS summary statistics

被引:3
|
作者
Zhang, Zixuan [1 ]
Jung, Junghyun [1 ]
Kim, Artem [1 ]
Suboc, Noah [1 ]
Gazal, Steven [1 ,2 ,3 ]
Mancuso, Nicholas [1 ,2 ,3 ]
机构
[1] Univ Southern Calif, Ctr Genet Epidemiol, Keck Sch Med, Dept Populat & Publ Hlth Sci, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Dept Quantitat & Computat Biol, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Norris Comprehens Canc Ctr, Keck Sch Med, Los Angeles, CA 90007 USA
基金
美国国家卫生研究院;
关键词
HERITABILITY; ADULT; HMGA2; INFLAMMATION; ASSOCIATION; RISK; GENE;
D O I
10.1016/j.ajhg.2023.09.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWASs) across thousands of traits have revealed the pervasive pleiotropy of trait-associated genetic variants. While methods have been proposed to characterize pleiotropic components across groups of phenotypes, scaling these approaches to ultra-large-scale biobanks has been challenging. Here, we propose FactorGo, a scalable variational factor analysis model to identify and characterize pleiotropic components using biobank GWAS summary data. In extensive simulations, we observe that FactorGo outperforms the state-of-the-art (model-free) approach tSVD in capturing latent pleiotropic factors across phenotypes while maintaining a similar computational cost. We apply FactorGo to estimate 100 latent pleiotropic factors from GWAS summary data of 2,483 phenotypes measured in European-ancestry Pan-UK BioBank individuals (N 1/4 420,531). Next, we find that factors from FactorGo are more enriched with relevant tissue-specific annotations than those identified by tSVD (p 1/4 2.58E-10) and validate our approach by recapitulating brain-specific enrichment for BMI and the height-related connection between reproductive system and muscular-skeletal growth. Finally, our analyses suggest shared etiologies between rheumatoid arthritis and periodontal condition in addition to alkaline phosphatase as a candidate prognostic biomarker for prostate cancer. Overall, FactorGo improves our biological understanding of shared etiologies across thousands of GWASs.
引用
收藏
页码:1863 / 1874
页数:12
相关论文
共 43 条
  • [1] A Novel Statistical Test of Pleiotropy Between Traits Using GWAS Summary Statistics
    Park, Jiwon
    Ray, Debashree
    GENETIC EPIDEMIOLOGY, 2024, 48 (07) : 377 - 378
  • [2] Across-cohort QC analyses of GWAS summary statistics from complex traits
    Chen, Guo-Bo
    Lee, Sang Hong
    Robinson, Matthew R.
    Trzaskowski, Maciej
    Zhu, Zhi-Xiang
    Winkler, Thomas W.
    Day, Felix R.
    Croteau-Chonka, Damien C.
    Wood, Andrew R.
    Locke, Adam E.
    Kutalik, Zoltan
    Loos, Ruth J. F.
    Frayling, Timothy M.
    Hirschhorn, Joel N.
    Yang, Jian
    Wray, Naomi R.
    Visscher, Peter M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 (01) : 137 - 146
  • [3] Across-cohort QC analyses of GWAS summary statistics from complex traits
    Guo-Bo Chen
    Sang Hong Lee
    Matthew R Robinson
    Maciej Trzaskowski
    Zhi-Xiang Zhu
    Thomas W Winkler
    Felix R Day
    Damien C Croteau-Chonka
    Andrew R Wood
    Adam E Locke
    Zoltán Kutalik
    Ruth J F Loos
    Timothy M Frayling
    Joel N Hirschhorn
    Jian Yang
    Naomi R Wray
    Peter M Visscher
    European Journal of Human Genetics, 2017, 25 : 137 - 146
  • [4] An iterative approach to detect pleiotropy and perform Mendelian Randomization analysis using GWAS summary statistics
    Zhu, Xiaofeng
    Li, Xiaoyin
    Xu, Rong
    Wang, Tao
    BIOINFORMATICS, 2021, 37 (10) : 1390 - 1400
  • [5] Abundant Pleiotropy in Human Complex Diseases and Traits
    Sivakumaran, Shanya
    Agakov, Felix
    Theodoratou, Evropi
    Prendergast, James G.
    Zgaga, Lina
    Manolio, Teri
    Rudan, Igor
    McKeigue, Paul
    Wilson, James F.
    Campbell, Harry
    AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (05) : 607 - 618
  • [6] Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics
    Zhang, Yiliang
    Cheng, Youshu
    Jiang, Wei
    Ye, Yixuan
    Lu, Qiongshi
    Zhao, Hongyu
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [7] Primo: integration of multiple GWAS and omics QTL summary statistics for elucidation of molecular mechanisms of trait-associated SNPs and detection of pleiotropy in complex traits
    Kevin J. Gleason
    Fan Yang
    Brandon L. Pierce
    Xin He
    Lin S. Chen
    Genome Biology, 21
  • [8] Primo: integration of multiple GWAS and omics QTL summary statistics for elucidation of molecular mechanisms of trait-associated SNPs and detection of pleiotropy in complex traits
    Gleason, Kevin J.
    Yang, Fan
    Pierce, Brandon L.
    He, Xin
    Chen, Lin S.
    GENOME BIOLOGY, 2020, 21 (01)
  • [9] Differentiate Horizontal Pleiotropy from Mediation Using GWAS Summary Statistics in Combining Mendelian Randomization Analysis
    Li, Xiaoyin
    Ni, Xumin
    Zhu, Xiaofeng
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 925 - 925
  • [10] Methods for meta-analysis of multiple traits using GWAS summary statistics
    Ray, Debashree
    Boehnke, Michael
    GENETIC EPIDEMIOLOGY, 2018, 42 (02) : 134 - 145