Waste classification using vision transformer based on multilayer hybrid convolution neural network

被引:21
|
作者
Alrayes, Fatma S. [1 ]
Asiri, Mashael M. [2 ]
Maashi, Mashael S. [3 ]
Nour, Mohamed K. [4 ]
Rizwanullah, Mohammed [5 ]
Osman, Azza Elneil [5 ]
Drar, Suhanda [5 ]
Zamani, Abu Sarwar [5 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[2] King Khalid Univ, Coll Sci & Art Mahayil, Dept Comp Sci, Abha, Saudi Arabia
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Software Engn, POB 103786, Riyadh 11543, Saudi Arabia
[4] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca, Saudi Arabia
[5] Prince Sattam Bin Abdulaziz Univ, Dept Comp & Self Dev Preparatory Year Deanship, AlKharj, Saudi Arabia
关键词
Deep learning; Waste classification; Vision transformer; Multilayer hybrid convolution neural network; TrashNet; SYSTEM; CNN;
D O I
10.1016/j.uclim.2023.101483
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid advancement of deep learning technology has led to the presentation of various network architectures for classification, making it easier to implement intelligent waste classification systems. However, existing waste classification models have problems such as low accuracy and slow processing. The current system does not utilize automatic classification. The proposed method uses Vision Transformer based on Multilayer Hybrid Convolution Neural Network for automatic waste classification (VT-MLH-CNN). The proposed method enhances the accuracy of waste classification and reduces the time taken for classification. Initially, it collects the data images, then the features are extracted, and next, it is processed into data normalization. The proposed model performs better by altering the number of network modules and connections. After this study determines the proper waste picture categorization variables, the best strategy is selected as the final model. The simulation results indicated that the suggested approach has a simplified network model and greater waste categorization accuracy compared to certain current efforts. Numerous tests on the TrashNet dataset demonstrate the usefulness of the recommended method, which achieves classification accuracy of up to 95.8%, which is 5.28% and 4.6% greater than those state-of-the-art techniques.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Multilayer Convolution Neural Network for the Classification of Mango Leaves Infected by Anthracnose Disease
    Singh, Uday Pratap
    Chouhan, Siddharth Singh
    Jain, Sukirty
    Jain, Sanjeev
    IEEE ACCESS, 2019, 7 : 43721 - 43729
  • [22] A hybrid convolution transformer for hyperspectral image classification
    Arshad, Tahir
    Zhang, Junping
    Ullah, Inam
    EUROPEAN JOURNAL OF REMOTE SENSING, 2024, 57 (01)
  • [23] Classification of Image Spam Using Convolution Neural Network
    Metlapalli, Ayyappa Chakravarthi
    Muthusamy, Thillaikarasi
    Battula, Bhanu Prakash
    TRAITEMENT DU SIGNAL, 2022, 39 (01) : 363 - 369
  • [24] Computerized Classification of Fruits using Convolution Neural Network
    Yamparala, Rajesh
    Challa, Ramaiah
    Kantharao, V
    Krishna, P. Seetha Rama
    2020 7TH IEEE INTERNATIONAL CONFERENCE ON SMART STRUCTURES AND SYSTEMS (ICSSS 2020), 2020, : 411 - 414
  • [25] Classification of Defects in Welds Using a Convolution Neural Network
    Nazarov, Ravil M.
    Gizatullin, Zinnur M.
    Konstantinov, Eduard S.
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 1641 - 1644
  • [26] VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
    Trivedi, Janak
    Devi, Mandalapu Sarada
    Dhara, Dave
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2021, 112 : 201 - 209
  • [27] Classification of Urine Sediment Based on Convolution Neural Network
    Pan, Jingjing
    Jiang, Cunbo
    Zhu, Tiantian
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [28] Graphite Classification Based on Improved Convolution Neural Network
    Liu, Guangjun
    Xu, Xiaoping
    Yu, Xiangjia
    Wang, Feng
    PROCESSES, 2021, 9 (11)
  • [29] Text Classification Method Based on Convolution Neural Network
    Li, Lin
    Xiao, Linlong
    Wang, Nanzhi
    Yang, Guocai
    Zhang, Jianwu
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1985 - 1989
  • [30] Vision transformer meets convolutional neural network for plant disease classification
    Thakur, Poornima Singh
    Chaturvedi, Shubhangi
    Khanna, Pritee
    Sheorey, Tanuja
    Ojha, Aparajita
    ECOLOGICAL INFORMATICS, 2023, 77