Language-Augmented Pixel Embedding for Generalized Zero-Shot Learning

被引:11
|
作者
Wang, Ziyang [1 ,2 ]
Gou, Yunhao [1 ,2 ]
Li, Jingjing [2 ]
Zhu, Lei [3 ]
Shen, Heng Tao [3 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313002, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Visualization; Task analysis; Feature extraction; Image recognition; Annotations; Knowledge transfer; Zero-shot learning; transfer learning; attention mechanism;
D O I
10.1109/TCSVT.2022.3208256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero-shot Learning (ZSL) aims to recognize novel classes through seen knowledge. The canonical approach to ZSL leverages a visual-to-semantic embedding to map the global features of an image sample to its semantic representation. These global features usually overlook the fine-grained information which is vital for knowledge transfer between seen and unseen classes, rendering these features sub-optimal for ZSL task, especially the more realistic Generalized Zero-shot Learning (GZSL) task where global features of similar classes could hardly be separated. To provide a remedy to this problem, we propose Language-Augmented Pixel Embedding (LAPE) that directly bridges the visual and semantic spaces in a pixel-based manner. To this end, we map the local features of each pixel to different attributes and then extract each semantic attribute from the corresponding pixel. However, the lack of pixel-level annotation conduces to an inefficient pixel-based knowledge transfer. To mitigate this dilemma, we adopt the text information of each attribute to augment the local features of image pixels which are related to the semantic attributes. Experiments on four ZSL benchmarks demonstrate that LAPE outperforms current state-of-the-art methods. Comprehensive ablation studies and analyses are provided to dissect what factors lead to this success.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 50 条
  • [31] Attentive Region Embedding Network for Zero-shot Learning
    Xie, Guo-Sen
    Liu, Li
    Jin, Xiaobo
    Zhu, Fan
    Zhang, Zheng
    Qin, Jie
    Yao, Yazhou
    Shao, Ling
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9376 - 9385
  • [32] Transfer Increment for Generalized Zero-Shot Learning
    Feng, Liangjun
    Zhao, Chunhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2506 - 2520
  • [33] Towards Effective Deep Embedding for Zero-Shot Learning
    Zhang, Lei
    Wang, Peng
    Liu, Lingqiao
    Shen, Chunhua
    Wei, Wei
    Zhang, Yanning
    van den Hengel, Anton
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (09) : 2843 - 2852
  • [34] Self-supervised embedding for generalized zero-shot learning in remote sensing scene classification
    Damalla, Rambabu
    Datla, Rajeshreddy
    Vishnu, Chalavadi
    Mohan, Chalavadi Krishna
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (03)
  • [35] Learning Multiple Criteria Calibration for Generalized Zero-shot Learning
    Lu, Ziqian
    Lu, Zhe-Ming
    Yu, Yunlong
    He, Zewei
    Luo, Hao
    Zheng, Yangming
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [36] Synthetic Sample Selection for Generalized Zero-Shot Learning
    Gowda, Shreyank N.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2023, : 58 - 67
  • [37] Discriminative comparison classifier for generalized zero-shot learning
    Hou, Mingzhen
    Xia, Wei
    Zhang, Xiangdong
    Gao, Quanxue
    NEUROCOMPUTING, 2020, 414 (414) : 10 - 17
  • [38] Prototype-Augmented Self-Supervised Generative Network for Generalized Zero-Shot Learning
    Wu, Jiamin
    Zhang, Tianzhu
    Zha, Zheng-Jun
    Luo, Jiebo
    Zhang, Yongdong
    Wu, Feng
    IEEE Transactions on Image Processing, 2024, 33 : 1938 - 1951
  • [39] Learning discriminative visual semantic embedding for zero-shot recognition
    Xie, Yurui
    Song, Tiecheng
    Yuan, Jianying
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 115
  • [40] Zero-Shot Learning via Joint Latent Similarity Embedding
    Zhang, Ziming
    Saligrama, Venkatesh
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 6034 - 6042