Language-Augmented Pixel Embedding for Generalized Zero-Shot Learning

被引:11
|
作者
Wang, Ziyang [1 ,2 ]
Gou, Yunhao [1 ,2 ]
Li, Jingjing [2 ]
Zhu, Lei [3 ]
Shen, Heng Tao [3 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313002, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Visualization; Task analysis; Feature extraction; Image recognition; Annotations; Knowledge transfer; Zero-shot learning; transfer learning; attention mechanism;
D O I
10.1109/TCSVT.2022.3208256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero-shot Learning (ZSL) aims to recognize novel classes through seen knowledge. The canonical approach to ZSL leverages a visual-to-semantic embedding to map the global features of an image sample to its semantic representation. These global features usually overlook the fine-grained information which is vital for knowledge transfer between seen and unseen classes, rendering these features sub-optimal for ZSL task, especially the more realistic Generalized Zero-shot Learning (GZSL) task where global features of similar classes could hardly be separated. To provide a remedy to this problem, we propose Language-Augmented Pixel Embedding (LAPE) that directly bridges the visual and semantic spaces in a pixel-based manner. To this end, we map the local features of each pixel to different attributes and then extract each semantic attribute from the corresponding pixel. However, the lack of pixel-level annotation conduces to an inefficient pixel-based knowledge transfer. To mitigate this dilemma, we adopt the text information of each attribute to augment the local features of image pixels which are related to the semantic attributes. Experiments on four ZSL benchmarks demonstrate that LAPE outperforms current state-of-the-art methods. Comprehensive ablation studies and analyses are provided to dissect what factors lead to this success.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 50 条
  • [1] Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2371 - 2381
  • [2] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Zongyan Han
    Zhenyong Fu
    Shuo Chen
    Jian Yang
    International Journal of Computer Vision, 2022, 130 : 2606 - 2622
  • [3] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622
  • [4] A Variational Autoencoder with Deep Embedding Model for Generalized Zero-Shot Learning
    Ma, Peirong
    Hu, Xiao
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11733 - 11740
  • [5] Transductive Unbiased Embedding for Zero-Shot Learning
    Song, Jie
    Shen, Chengchao
    Yang, Yezhou
    Liu, Yang
    Song, Mingli
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1024 - 1033
  • [6] Disentangled Ontology Embedding for Zero-shot Learning
    Geng, Yuxia
    Chen, Jiaoyan
    Zhang, Wen
    Xu, Yajing
    Chen, Zhuo
    Pan, Jeff Z.
    Huang, Yufeng
    Xiong, Feiyu
    Chen, Huajun
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 443 - 453
  • [7] Learning a Deep Embedding Model for Zero-Shot Learning
    Zhang, Li
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3010 - 3019
  • [8] Contrastive embedding-based feature generation for generalized zero-shot learning
    Wang, Han
    Zhang, Tingting
    Zhang, Xiaoxuan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (05) : 1669 - 1681
  • [9] Generative Model with Semantic Embedding and Integrated Classifier for Generalized Zero-Shot Learning
    Pambala, Ayyappa Kumar
    Dutta, Titir
    Biswas, Soma
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1226 - 1235
  • [10] Contrastive embedding-based feature generation for generalized zero-shot learning
    Han Wang
    Tingting Zhang
    Xiaoxuan Zhang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1669 - 1681