Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons

被引:24
|
作者
Zhao, Chenjie [1 ,2 ,3 ]
Liu, Ryan Wen [1 ,2 ,3 ]
Qu, Jingxiang [1 ,2 ]
Gao, Ruobin [4 ]
机构
[1] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Peoples R China
[2] State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
[3] Wuhan Univ Technol, Chongqing Res Inst, Chongqing, Peoples R China
[4] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
关键词
Maritime industry; Unmanned aerial vehicle; Maritime UAVs; Object detection; Aerial datasets; CONVOLUTIONAL NEURAL-NETWORK; UAV; MULTISCALE; TRACKING; FUSION;
D O I
10.1016/j.engappai.2023.107513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advancement of maritime unmanned aerial vehicles (UAVs) and deep learning technologies, the application of UAV-based object detection has become increasingly significant in the fields of maritime industry and ocean engineering. Endowed with intelligent sensing capabilities, the maritime UAVs enable effective and efficient maritime surveillance. To further promote the development of maritime UAV-based object detection, this paper provides a comprehensive review of challenges, relative methods, and UAV aerial datasets. Specifically, in this work, we first briefly summarize four challenges for object detection on maritime UAVs, i.e., object feature diversity, device limitation, maritime environment variability, and dataset scarcity. We then focus on computational methods to improve maritime UAV-based object detection performance in terms of scale-aware, small object detection, view-aware, rotated object detection, lightweight methods, and others. Next, we review the UAV aerial image/video datasets and propose a maritime UAV aerial dataset named MS2ship for ship detection. Furthermore, we conduct a series of experiments to present the performance evaluation and robustness analysis of object detection methods on maritime datasets. Eventually, we give the discussion and outlook on future works for maritime UAV-based object detection. The MS2ship dataset is available at https://github.com/zcj234/MS2ship.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Deep Learning-Assisted Unmanned Aerial Vehicle Flight Data Anomaly Detection: A Review
    Yang, Lei
    Li, Shaobo
    Zhang, Yizong
    Zhu, Caichao
    Liao, Zihao
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 31681 - 31695
  • [32] Artemisia Frigida Distribution Mapping in Grassland with Unmanned Aerial Vehicle Imagery and Deep Learning
    Wang, Yongcai
    Wan, Huawei
    Hu, Zhuowei
    Gao, Jixi
    Sun, Chenxi
    Yang, Bin
    DRONES, 2024, 8 (04)
  • [33] Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging
    Zhao, Xin
    Yuan, Yitong
    Song, Mengdie
    Ding, Yang
    Lin, Fenfang
    Liang, Dong
    Zhang, Dongyan
    SENSORS, 2019, 19 (18)
  • [34] From Simulation to Reality: Ground Vehicle Detection in Aerial Imagery based on Deep Learning
    Yang, Yu
    Mu, Chengpo
    Zhang, Ruiheng
    Li, Xuejian
    Yang, Ruixin
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [35] Reinforced Learning-Based Robust Control Design for Unmanned Aerial Vehicle
    Adnan Fayyaz Ud Din
    Imran Mir
    Faiza Gul
    Mohammad Rustom Al Nasar
    Laith Abualigah
    Arabian Journal for Science and Engineering, 2023, 48 : 1221 - 1236
  • [36] Reinforced Learning-Based Robust Control Design for Unmanned Aerial Vehicle
    Din, Adnan Fayyaz Ud
    Mir, Imran
    Gul, Faiza
    Al Nasar, Mohammad Rustom
    Abualigah, Laith
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 1221 - 1236
  • [37] OBJECT BASED CLASSIFICATION OF UNMANNED AERIAL VEHICLE (UAV) IMAGERY FOR FOREST FIRES MONITORING
    Bilgilioglu, B. Baha
    Ozturk, Ozan
    Sariturk, Batuhan
    Seker, Dursun Zafer
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (02): : 1011 - 1017
  • [38] Deep Learning-Based Improved Automatic Building Extraction from Open-Source High Resolution Unmanned Aerial Vehicle (UAV) Imagery
    Maniyar, Chintan B.
    Kumar, Minakshi
    PROCEEDINGS OF UASG 2021: WINGS 4 SUSTAINABILITY, 2023, 304 : 51 - 66
  • [39] Object Detection Technique for Small Unmanned Aerial Vehicle
    Bin Ramli, M. Faiz
    Legowo, Ari
    Shamsudin, Syariful Syafiq
    6TH INTERNATIONAL CONFERENCE ON MECHATRONICS (ICOM'17), 2017, 260
  • [40] The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking
    Du, Dawei
    Qi, Yuankai
    Yu, Hongyang
    Yang, Yifan
    Duan, Kaiwen
    Li, Guorong
    Zhang, Weigang
    Huang, Qingming
    Tian, Qi
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 375 - 391