Searching for optimal Latin hypercube designs by a local greedy strategy

被引:2
|
作者
Zhou, Xiaoxue [1 ]
Wang, Xiaofei [1 ]
Wang, Bin [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun, Peoples R China
关键词
Computer experiment; Latin hypercube design; Simulated annealing;
D O I
10.1080/03610918.2023.2240047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Latin hypercube design (LHD), because of its one-dimensional projection uniformity, is commonly used in computer experiment. The randomly generated LHD may have too many concentrated design points, and factors may be highly correlated. In this article, we suggested a local greedy strategy for searching optimal LHDs. Our strategy consists of two parts. One is a swap process for doing a local greedy search in a polynomial time. The other is a simulated annealing process for jumping out of the possible local optima. Our strategy is flexible and adapts to various space-filling criteria of LHDs. The simulated experiments illustrated that our proposed algorithm can produce LHDs with well space-filling property and orthogonality. Compared to other classical design algorithms, our algorithm performed better on the criteria related to the point distance and the column correlation. Moreover, for the response surface approximation, the Kriging model using our produced optimal LHD performed more robust on the surface prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Nested maximin Latin hypercube designs
    Gijs Rennen
    Bart Husslage
    Edwin R. Van Dam
    Dick Den Hertog
    Structural and Multidisciplinary Optimization, 2010, 41 : 371 - 395
  • [22] Construction of orthogonal Latin hypercube designs
    Sun, Fasheng
    Liu, Min-Qian
    Lin, Dennis K. J.
    BIOMETRIKA, 2009, 96 (04) : 971 - 974
  • [23] Uniform sliced Latin hypercube designs
    Chen, Hao
    Huang, Hengzhen
    Lin, Dennis K. J.
    Liu, Min-Qian
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2016, 32 (05) : 574 - 584
  • [24] Sliced symmetrical Latin hypercube designs
    Wang, Xiaodi
    Chen, Xueping
    Lin, Dennis K. J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 218 : 59 - 72
  • [25] Nested symmetrical Latin hypercube designs
    Wang, Xiaodi
    Huang, Hengzhen
    STATISTICAL PAPERS, 2024, 65 (07) : 4299 - 4330
  • [26] Bounds for Maximin Latin Hypercube Designs
    van Dam, Edwin R.
    Rennen, Gijs
    Husslage, Bart
    OPERATIONS RESEARCH, 2009, 57 (03) : 595 - 608
  • [27] Nested maximin Latin hypercube designs
    Rennen, Gijs
    Husslage, Bart
    Van Dam, Edwin R.
    Den Hertog, Dick
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (03) : 371 - 395
  • [28] Column expanded Latin hypercube designs
    Wei, Qiao
    Yang, Jian-Feng
    Liu, Min-Qian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 234
  • [29] On the construction of nested orthogonal Latin hypercube designs
    Sukanta Dash
    Baidya Nath Mandal
    Rajender Parsad
    Metrika, 2020, 83 : 347 - 353
  • [30] CONSTRUCTION OF ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS
    Wang, Lin
    Sun, Fasheng
    Lin, Dennis K. J.
    Liu, Min-Qian
    STATISTICA SINICA, 2018, 28 (03) : 1503 - 1520