Searching for optimal Latin hypercube designs by a local greedy strategy
被引:2
|
作者:
Zhou, Xiaoxue
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R China
Zhou, Xiaoxue
[1
]
Wang, Xiaofei
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R China
Wang, Xiaofei
[1
]
Wang, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R China
Wang, Bin
[2
]
机构:
[1] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun, Peoples R China
Computer experiment;
Latin hypercube design;
Simulated annealing;
D O I:
10.1080/03610918.2023.2240047
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The Latin hypercube design (LHD), because of its one-dimensional projection uniformity, is commonly used in computer experiment. The randomly generated LHD may have too many concentrated design points, and factors may be highly correlated. In this article, we suggested a local greedy strategy for searching optimal LHDs. Our strategy consists of two parts. One is a swap process for doing a local greedy search in a polynomial time. The other is a simulated annealing process for jumping out of the possible local optima. Our strategy is flexible and adapts to various space-filling criteria of LHDs. The simulated experiments illustrated that our proposed algorithm can produce LHDs with well space-filling property and orthogonality. Compared to other classical design algorithms, our algorithm performed better on the criteria related to the point distance and the column correlation. Moreover, for the response surface approximation, the Kriging model using our produced optimal LHD performed more robust on the surface prediction.
机构:
Nankai Univ, Sch Math Sci, Key Lab Pure Math & Combinator, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Key Lab Pure Math & Combinator, Tianjin 300071, Peoples R China
Sun, Fasheng
Liu, Min-Qian
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Key Lab Pure Math & Combinator, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Key Lab Pure Math & Combinator, Tianjin 300071, Peoples R China
Liu, Min-Qian
Lin, Dennis K. J.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USANankai Univ, Sch Math Sci, Key Lab Pure Math & Combinator, Tianjin 300071, Peoples R China
机构:
Nankai Univ, Sch Stat & Data Sci, NITFID, LPMC & KLMDASR, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, NITFID, LPMC & KLMDASR, Tianjin 300071, Peoples R China
Wei, Qiao
Yang, Jian-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, NITFID, LPMC & KLMDASR, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, NITFID, LPMC & KLMDASR, Tianjin 300071, Peoples R China
Yang, Jian-Feng
Liu, Min-Qian
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, NITFID, LPMC & KLMDASR, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, NITFID, LPMC & KLMDASR, Tianjin 300071, Peoples R China
机构:
Nankai Univ, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, Inst Stat, Tianjin 300071, Peoples R ChinaNankai Univ, LPMC, Tianjin 300071, Peoples R China
Wang, Lin
Sun, Fasheng
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, KLAS, Dept Stat, Changchun 130024, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Dept Stat, Changchun 130024, Peoples R ChinaNankai Univ, LPMC, Tianjin 300071, Peoples R China
Sun, Fasheng
Lin, Dennis K. J.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USANankai Univ, LPMC, Tianjin 300071, Peoples R China
Lin, Dennis K. J.
Liu, Min-Qian
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, Inst Stat, Tianjin 300071, Peoples R ChinaNankai Univ, LPMC, Tianjin 300071, Peoples R China