A Z-scheme ZnIn2S4/ZnS heterojunction catalyst: insight into enhanced photocatalytic performance and mechanism

被引:13
|
作者
Liu, Shuaishuai [1 ]
Mao, Yuchen [1 ]
Su, Zhiyuan [1 ]
Fang, Fan [1 ]
Li, Kun [1 ]
Wu, Yuhan [1 ]
Liu, Puyu [1 ]
Li, Peng [1 ]
Chang, Kun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Ctr Hydrogenergy, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGHLY EFFICIENT; FOSSIL ENERGY; WATER; CONSTRUCTION;
D O I
10.1039/d3cy00298e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reasonable design of a highly efficient photocatalyst to improve its hydrogen production performance has attracted extensive attention. In this work, ZnIn2S4/ZnS (ZIS/ZnS) heterojunctions were constructed through a one-step solvothermal method, which ensures a good microscopic relationship between different phases and keeps their interfaces in close contact. The optimized ZIS/ZnS catalyst exhibited exceptionally enhanced photocatalytic activity under simulated AM 1.5G irradiation, and the maximum hydrogen evolution rate reached 464.1 mu mol h(-1), which was 16.2 and 7.3 times higher than that of pure ZnS and ZIS, respectively. Photo/electrochemical analyses proved that the ZIS/ZnS heterojunction has high charge separation efficiency and a strong redox ability. A Z-scheme electron transfer mechanism was proposed to explain the dramatic increase in photocatalytic activity which was based on photodeposition experiments. In addition, the catalyst also showed excellent hydrogen evolution activity under visible light irradiation (lambda > 420 nm). We explored the charge transfer mechanism in detail under different light conditions, employing in situ XPS and photo-deposition experiments.
引用
收藏
页码:3351 / 3357
页数:7
相关论文
共 50 条
  • [31] A facile synthesis of a ZIF-derived ZnS/ZnIn2S4 heterojunction and enhanced photocatalytic hydrogen evolution
    Song, Huihui
    Wang, Na
    Meng, Hao
    Han, Yide
    Wu, Junbiao
    Xu, Junli
    Xu, Yan
    Zhang, Xia
    Sun, Ting
    DALTON TRANSACTIONS, 2020, 49 (31) : 10816 - 10823
  • [32] Photoelectrochemical detection of Cu2+ based on ZnIn2S4/WO3 Z-scheme heterojunction
    Shen, Yuru
    Zeng, Xingyu
    Chen, Mingjian
    Du, Yun
    Li, Yinyu
    Peng, Yange
    He, Fang
    Wu, Sizhan
    Qin, Hangdao
    MICROCHIMICA ACTA, 2024, 191 (12)
  • [33] Efficient photocatalytic hydrogen evolution of Z-scheme BiVO4/ZnIn2S4 4 /ZnIn 2 S 4 heterostructure driven by visible light
    Li, Liyang
    Zhang, Zhengying
    Fang, Dong
    Yang, Di
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 169
  • [34] Construction of 2D/1D ZnIn2S4/ZnO with Z-scheme system for boosting photocatalytic performance
    Yu, Yan
    Yao, Binghua
    Cao, Baoyue
    Chang, Liangliang
    Xu, Shan
    Wang, Xiangting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [35] Construction of 2D/1D ZnIn2S4/ZnO with Z-scheme system for boosting photocatalytic performance
    Yu, Yan
    Yao, Binghua
    Cao, Baoyue
    Chang, Liangliang
    Xu, Shan
    Wang, Xiangting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [36] An artificially constructed direct Z-scheme heterojunction: WO3 nanoparticle decorated ZnIn2S4 for efficient photocatalytic hydrogen production
    Wang, Yanze
    Chen, Da
    Hu, Yiqian
    Qin, Laishun
    Liang, Junhui
    Sun, Xingguo
    Huang, Yuexiang
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (04) : 1681 - 1692
  • [37] Construction of 2D/1D ZnIn2S4/ZnO with Z-scheme system for boosting photocatalytic performance
    Yu, Yan
    Yao, Binghua
    Cao, Baoyue
    Chang, Liangliang
    Xu, Shan
    Wang, Xiangting
    Journal of Alloys and Compounds, 2022, 924
  • [38] Defect-engineered WOx/ZnIn2S4 Z-scheme heterojunction boosting photocatalytic H2 production via photothermal coupling
    Wang, Biao
    Zhang, Chunyang
    Zhao, Shidong
    Wang, Shujian
    Liu, Feng
    Lu, Kejian
    Si, Yitao
    Liu, Maochang
    JOURNAL OF ENERGY CHEMISTRY, 2025, 103 : 9 - 18
  • [39] Revisiting Polytypism in Hexagonal Ternary Sulfide ZnIn2S4 for Photocatalytic Hydrogen Production Within the Z-Scheme
    Lee, Jinho
    Kim, Heelim
    Lee, Taehun
    Jang, Woosun
    Lee, Kyu Hyoung
    Soon, Aloysius
    CHEMISTRY OF MATERIALS, 2019, 31 (21) : 9148 - 9155
  • [40] Promoting photocatalytic H2 evolution through interfacial charge separation on the direct Z-scheme ZnIn2S4/ZrO2 heterojunction
    Xie, Ziyu
    Liu, Guozhong
    Xie, Linjun
    Wu, Panpan
    Liu, Haizhen
    Wang, Jiangli
    Xie, Yiming
    Chen, Jing
    Lu, Can-Zhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (84) : 32782 - 32796