Dual-channel and multi-granularity gated graph attention network for aspect-based sentiment analysis

被引:14
|
作者
Wang, Yong [1 ]
Yang, Ningchuang [1 ]
Miao, Duoqian [2 ]
Chen, Qiuyi [1 ]
机构
[1] Chongqing Univ Technol, Sch Artificial Intelligence, Chongqing 401135, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph attention network; Aspect-based sentiment analysis; Multi-granularity; BERT;
D O I
10.1007/s10489-022-04198-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Aspect-Based Sentiment Analysis(ABSA) aims to determine the sentiment polarity of a specific aspect. Existing approaches use graph attention networks(GAT) to model syntactic information with dependency trees. However, these methods do not consider the noise of the dependency tree and ignore the sentence-level feature. To this end, we propose the Dual-Channel and Multi-Granularity Gated Graph Attention Network(DMGGAT) to jointly consider semantics and syntactic information of multiple granularity features generated by GAT and BERT, in which BERT alleviates the instability of the dependency tree and enhance the semantic information lost in the graph calculation. First, We propose a two-channel structure composed of BERT and GAT, enabling syntactic and semantic information generated by BERT to assist GAT. Furthermore, an aspect-based attention mechanism is used to generate sentence-level features. Finally, a newly designed gated module is introduced to integrate the aspect(fine-Granularity) and sentence-level (coarse-Granularity) features from the two channels to classify jointly. The experimental results show that our model achieves advanced performance compared to the current model on three extensive datasets.
引用
收藏
页码:13145 / 13157
页数:13
相关论文
共 50 条
  • [41] A relative position attention network for aspect-based sentiment analysis
    Chao Wu
    Qingyu Xiong
    Min Gao
    Qiude Li
    Yang Yu
    Kaige Wang
    Knowledge and Information Systems, 2021, 63 : 333 - 347
  • [42] Polarity enriched attention network for aspect-based sentiment analysis
    Wadawadagi R.
    Pagi V.
    International Journal of Information Technology, 2022, 14 (6) : 2767 - 2778
  • [43] Aspect-Based Sentiment Analysis with Dependency Relation Weighted Graph Attention
    Jiang, Tingyao
    Wang, Zilong
    Yang, Ming
    Li, Cheng
    INFORMATION, 2023, 14 (03)
  • [44] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Luwei Xiao
    Xiaohui Hu
    Yinong Chen
    Yun Xue
    Bingliang Chen
    Donghong Gu
    Bixia Tang
    Multimedia Tools and Applications, 2022, 81 : 19051 - 19070
  • [45] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Xiao, Luwei
    Hu, Xiaohui
    Chen, Yinong
    Xue, Yun
    Chen, Bingliang
    Gu, Donghong
    Tang, Bixia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 19051 - 19070
  • [46] Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
    Huang, Zhenhuan
    Wu, Guansheng
    Qian, Xiang
    Zhang, Baochang
    2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 668 - 673
  • [47] Memory network with hierarchical multi-head attention for aspect-based sentiment analysis
    Yuzhong Chen
    Tianhao Zhuang
    Kun Guo
    Applied Intelligence, 2021, 51 : 4287 - 4304
  • [48] Combining Adversarial Training and Relational Graph Attention Network for Aspect-Based Sentiment Analysis with BERT
    Chen, Mingfei
    Wu, Wencong
    Zhang, Yungang
    Zhou, Ziyun
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [49] Memory network with hierarchical multi-head attention for aspect-based sentiment analysis
    Chen, Yuzhong
    Zhuang, Tianhao
    Guo, Kun
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4287 - 4304
  • [50] Aspect-Based Sentiment Analysis on Convolution Neural Network and Multi-Hierarchical Attention
    Lou, Zhixiong
    Wu, Yuexin
    Fan, Chunxiao
    Chen, Wentong
    2020 25TH INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2020), 2020, : 193 - 198