Robust Higher-Order Hamiltonian Engineering for Quantum Sensing with Strongly Interacting Systems

被引:6
|
作者
Zhou, Hengyun [1 ]
Martin, Leigh S. [1 ]
Tyler, Matthew [1 ]
Makarova, Oksana [1 ,2 ]
Leitao, Nathaniel [1 ]
Park, Hongkun [1 ,3 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
NITROGEN-VACANCY CENTERS; SOLID-STATE SPIN; MAGNETIC-RESONANCE; PULSE SEQUENCES; PHYSICS;
D O I
10.1103/PhysRevLett.131.220803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamical decoupling techniques constitute an integral part of many quantum sensing platforms, often leading to orders-of-magnitude improvements in coherence time and sensitivity. Most ac sensing sequences involve a periodic echolike structure, in which the target signal is synchronized with the echo period. We show that for strongly interacting systems, this construction leads to a fundamental sensitivity limit associated with imperfect interaction decoupling. We present a simple physical picture demonstrating the origin of this limitation, and further formalize these considerations in terms of concise higher-order decoupling rules. We then show how these limitations can be surpassed by identifying a novel sequence building block, in which the signal period matches twice the echo period. Using these decoupling rules and the resulting sequence building block, we experimentally demonstrate significant improvements in dynamical decoupling timescales and magnetic field sensitivity, opening the door for new applications in quantum sensing and quantum many-body physics.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Distributed Robust Consensus Tracking Control of Higher-order Nonlinear Systems
    Wang, Gang
    Wang, Chaoli
    Du, Qinghui
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2096 - 2101
  • [32] HAMILTONIAN-DYNAMICS OF HIGHER-ORDER THEORIES OF GRAVITY
    SZCZYRBA, V
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (01) : 146 - 158
  • [33] Higher-order Hamiltonian fluid reduction of Vlasov equation
    Perin, M.
    Chandre, C.
    Morrison, P. J.
    Tassi, E.
    ANNALS OF PHYSICS, 2014, 348 : 50 - 63
  • [34] Generalized Conformable Hamiltonian Dynamics with Higher-Order Derivatives
    Alawaideh, Yazen. M.
    Ramazanova, Aysel
    Issaadi, Hayat
    Al-khamiseh, Bashar. M.
    Bilal, Muhammad
    Baleanu, Dumitru
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [35] Higher-Order Hamiltonian Model for Unidirectional Water Waves
    J. L. Bona
    X. Carvajal
    M. Panthee
    M. Scialom
    Journal of Nonlinear Science, 2018, 28 : 543 - 577
  • [36] DIGITAL SYSTEMS OF HIGHER-ORDER
    SCHEUING, EU
    SPERLICH, J
    1978, 51 (4-5): : 185 - 190
  • [37] Higher-Order Hamiltonian Model for Unidirectional Water Waves
    Bona, J. L.
    Carvajal, X.
    Panthee, M.
    Scialom, M.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) : 543 - 577
  • [38] Port-Hamiltonian formulation for Higher-order PDEs
    Schoeberl, M.
    Schlacher, K.
    IFAC PAPERSONLINE, 2015, 48 (13): : 244 - 249
  • [39] HIGHER-ORDER PCM SYSTEMS
    SPERLICH, J
    INTERNATIONALE ELEKTRONISCHE RUNDSCHAU, 1974, 28 (01): : 5 - 7
  • [40] HAMILTONIAN FORMALISM FOR GENERAL LAGRANGIANS WITH HIGHER-ORDER DERIVATIVES
    KIMURA, T
    LETTERE AL NUOVO CIMENTO, 1972, 5 (01): : 81 - &