Contact Reduction with Bounded Stiffness for Robust Sim-to-Real Transfer of Robot Assembly

被引:0
|
作者
Vuong, Nghia [1 ]
Pham, Quang-Cuong [1 ,2 ]
机构
[1] Nanyang Technol Univ, Singapore Ctr 3D Printing SC3DP, Sch Mech & Aerosp Engn, Singapore, Singapore
[2] Eureka Robot, Singapore, Singapore
来源
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS | 2023年
基金
新加坡国家研究基金会;
关键词
FORCE CONTROL;
D O I
10.1109/IROS55552.2023.10341866
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using generic geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 50 条
  • [21] Blind Spot Detection for Safe Sim-to-Real Transfer
    Ramakrishnan, Ramya
    Kamar, Ece
    Dey, Debadeepta
    Horvitz, Eric
    Shah, Julie
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 67 : 191 - 234
  • [22] Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
    Peng, Xue Bin
    Andrychowicz, Marcin
    Zaremba, Wojciech
    Abbeel, Pieter
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 3803 - 3810
  • [23] Sim-to-Real Transfer for Robotic Manipulation with Tactile Sensory
    Ding, Zihan
    Tsai, Ya-Yen
    Lee, Wang Wei
    Huang, Bidan
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6778 - 6785
  • [24] Dual Action Policy for Robust Sim-to-Real Reinforcement Learning
    Terence, Ng Wen Zheng
    Chen Jianda
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IV, 2024, 15019 : 369 - 380
  • [25] Sim-to-Real Control of Trifinger Robot by Deep Reinforcement Learning
    Wan, Qiang
    Wu, Tianyang
    Ye, Jiawei
    Wan, Lipeng
    Lau, Xuguang
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT VI, 2025, 15206 : 300 - 314
  • [26] Enhancing Visual Domain Randomization with Real Images for Sim-to-Real Transfer
    Beres, Andras
    Gyires-Toth, Balint
    INFOCOMMUNICATIONS JOURNAL, 2023, 15 (01): : 15 - 25
  • [27] Sim-to-Real Transfer of Automatic Extinguishing Strategy for Firefighting Robots
    Chaoxia, Chenyu
    Shang, Weiwei
    Zhou, Junyi
    Yang, Zhiwei
    Zhang, Fei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 1 - 8
  • [28] GAUSSIAN PROCESS REGRESSION FOR SIM-TO-REAL TRANSFER OF HOPPING GAITS
    Krause, Jeremy
    Alaeddini, Adel
    Bhounsule, Pranav A.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 8, 2023,
  • [29] Sim-to-Real: Designing Locomotion Controller for Six-Legged Robot
    Yang, Chenyu
    Gao, Yue
    Tian, Changda
    Yao, QingShan
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 746 - 751
  • [30] Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey
    Zhao, Wenshuai
    Queralta, Jorge Pena
    Westerlund, Tomi
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 737 - 744