Contact Reduction with Bounded Stiffness for Robust Sim-to-Real Transfer of Robot Assembly

被引:0
|
作者
Vuong, Nghia [1 ]
Pham, Quang-Cuong [1 ,2 ]
机构
[1] Nanyang Technol Univ, Singapore Ctr 3D Printing SC3DP, Sch Mech & Aerosp Engn, Singapore, Singapore
[2] Eureka Robot, Singapore, Singapore
来源
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS | 2023年
基金
新加坡国家研究基金会;
关键词
FORCE CONTROL;
D O I
10.1109/IROS55552.2023.10341866
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using generic geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 50 条
  • [1] Scalable sim-to-real transfer of soft robot designs
    Kriegman, Sam
    Nasab, Amir Mohammadi
    Shah, Dylan
    Steele, Hannah
    Branin, Gabrielle
    Levin, Michael
    Bongard, Josh
    Kramer-Bottiglio, Rebecca
    2020 3RD IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), 2020, : 359 - 366
  • [2] Robust visual sim-to-real transfer for robotic manipulation
    Garcia, Ricardo
    Strudel, Robin
    Chen, Shizhe
    Arlaud, Etienne
    Laptev, Ivan
    Schmid, Cordelia
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 992 - 999
  • [3] Robot Manipulation Skills Transfer for Sim-to-Real in Unstructured Environments
    Yin, Zikang
    Ye, Chao
    An, Hao
    Lin, Weiyang
    Wang, Zhifeng
    ELECTRONICS, 2023, 12 (02)
  • [4] Survey on Sim-to-real Transfer Reinforcement Learning in Robot Systems
    Lin Q.
    Yu C.
    Wu X.-W.
    Dong Y.-Z.
    Xu X.
    Zhang Q.
    Guo X.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (02): : 711 - 738
  • [5] On the Role of the Action Space in Robot Manipulation Learning and Sim-to-Real Transfer
    Aljalbout, Elie
    Frank, Felix
    Karl, Maximilian
    van der Smagt, Patrick
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5895 - 5902
  • [6] Sim-to-real transfer of co-optimized soft robot crawlers
    Charles Schaff
    Audrey Sedal
    Shiyao Ni
    Matthew R. Walter
    Autonomous Robots, 2023, 47 : 1195 - 1211
  • [7] Sim-to-real transfer of co-optimized soft robot crawlers
    Schaff, Charles
    Sedal, Audrey
    Ni, Shiyao
    Walter, Matthew R.
    AUTONOMOUS ROBOTS, 2023, 47 (08) : 1195 - 1211
  • [8] Sim-to-Real Transfer for Biped Locomotion
    Yu, Wenhao
    Kumar, Visak C. V.
    Turk, Greg
    Liu, C. Karen
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 3503 - 3510
  • [9] Pose Estimation for Robot Manipulators via Keypoint Optimization and Sim-to-Real Transfer
    Lu, Jingpei
    Richter, Florian
    Yip, Michael C.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 4622 - 4629
  • [10] Sim-to-Real Transfer with Action Mapping and State Prediction for Robot Motion Control
    Zhu, Xianjin
    Zheng, Xudong
    Zhang, Qiyuan
    Chen, Zhang
    Liu, Yu
    Liang, Bin
    2021 6TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS), 2021, : 39 - 44