On Hadamard powers of random Wishart matrices

被引:0
|
作者
Baslingker, Jnaneshwar [1 ]
机构
[1] Indian Inst Sci, Bengaluru, India
关键词
Wishart matrices; Hadamard powers;
D O I
10.1214/23-ECP561
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A famous result of Horn and Fitzgerald is that the beta-th Hadamard power of any n x n positive semi-definite (p.s.d.) matrix with non-negative entries is p.s.d. for all beta <= n-2 and is not necessarily p.s.d. for beta < n - 2, with beta is not an element of N. In this article, we study this question for random Wishart matrix A(n) := XnXnT, where X-n is n x n matrix with i.i.d. Gaussian entries. It is shown that applying x -> vertical bar x vertical bar(alpha) entrywise to An, the resulting matrix is p.s.d., with high probability, for alpha > 1 and is not p.s.d., with high probability, for alpha < 1. It is also shown that if X-n are left perpendicularn(s)right perpendicular x n matrices, for any s < 1, then the transition of positivity occurs at the exponent alpha = s.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On the largest-eigenvalue process for generalized Wishart random matrices
    Dieker, A. B.
    Warren, J.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 6 : 369 - 376
  • [32] Large-deviation theory for diluted Wishart random matrices
    Perez Castillo, Isaac
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [33] Superstatistical generalizations of Wishart-Laguerre ensembles of random matrices
    Abul-Magd, A. Y.
    Akemann, G.
    Vivo, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (17)
  • [34] Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices
    Majumdar, Satya N.
    Vergassola, Massimo
    PHYSICAL REVIEW LETTERS, 2009, 102 (06)
  • [35] Singular value correlation functions for products of Wishart random matrices
    Akemann, Gernot
    Kieburg, Mario
    Wei, Lu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
  • [36] On the Singular Spectrum of Powers and Products of Random Matrices
    Alexeev, N. V.
    Goetze, F.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 505 - 507
  • [37] On the singular spectrum of powers and products of random matrices
    N. V. Alexeev
    F. Götze
    A. N. Tikhomirov
    Doklady Mathematics, 2010, 82 : 505 - 507
  • [38] Some statistical properties of Hadamard products of random matrices
    Heinz Neudecker
    Shuangzhe Liu
    Statistical Papers, 2001, 42 : 475 - 487
  • [39] Eigenvalue equalities for ordinary and Hadamard products of powers of positive semidefinite matrices
    Cheng, Che-Man
    Law, Ieng-Chi
    Leong, Sok-I
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 771 - 787
  • [40] Proof of a conjecture concerning the Hadamard powers of inverse M-matrices
    Chen, Shencan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 477 - 481