On Hadamard powers of random Wishart matrices

被引:0
|
作者
Baslingker, Jnaneshwar [1 ]
机构
[1] Indian Inst Sci, Bengaluru, India
关键词
Wishart matrices; Hadamard powers;
D O I
10.1214/23-ECP561
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A famous result of Horn and Fitzgerald is that the beta-th Hadamard power of any n x n positive semi-definite (p.s.d.) matrix with non-negative entries is p.s.d. for all beta <= n-2 and is not necessarily p.s.d. for beta < n - 2, with beta is not an element of N. In this article, we study this question for random Wishart matrix A(n) := XnXnT, where X-n is n x n matrix with i.i.d. Gaussian entries. It is shown that applying x -> vertical bar x vertical bar(alpha) entrywise to An, the resulting matrix is p.s.d., with high probability, for alpha > 1 and is not p.s.d., with high probability, for alpha < 1. It is also shown that if X-n are left perpendicularn(s)right perpendicular x n matrices, for any s < 1, then the transition of positivity occurs at the exponent alpha = s.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Wishart and anti-Wishart random matrices
    Janik, RA
    Nowak, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3629 - 3637
  • [2] Hadamard powers of some positive matrices
    Jain, Tanvi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 528 : 147 - 158
  • [3] Hadamard powers and totally positive matrices
    Fallat, Shaun M.
    Johnson, Charles R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) : 420 - 427
  • [4] Harmonic means of Wishart random matrices
    Lodhia, Asad
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (02)
  • [5] Rank of Hadamard powers of Euclidean distance matrices
    Boris Horvat
    Gašper Jaklič
    Iztok Kavkler
    Milan Randić
    Journal of Mathematical Chemistry, 2014, 52 : 729 - 740
  • [6] Rank of Hadamard powers of Euclidean distance matrices
    Horvat, Boris
    Jaklic, Gasper
    Kavkler, Iztok
    Randic, Milan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (02) : 729 - 740
  • [7] FRACTIONAL HADAMARD POWERS OF POSITIVE DEFINITE MATRICES
    FITZGERALD, CH
    HORN, RA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A476 - A476
  • [8] POSITIVITY OF HADAMARD POWERS OF A FEW BAND MATRICES
    Panwar, Veer Singh
    Reddy, Satyanarayana
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 85 - 90
  • [9] FRACTIONAL HADAMARD POWERS OF POSITIVE DEFINITE MATRICES
    FITZGERALD, CH
    HORN, RA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (03) : 633 - 642
  • [10] Fractional Hadamard powers of positive semidefinite matrices
    Fischer, P
    Stegeman, JD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 371 : 53 - 74