Polyp segmentation with distraction separation

被引:5
|
作者
Liu, Tongtong [1 ]
Ye, Xiongjun [2 ]
Hu, Kai [1 ]
Xiong, Dapeng [3 ,4 ]
Zhang, Yuan [1 ]
Li, Xuanya [5 ]
Gao, Xieping [6 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Beijing 100021, Peoples R China
[3] Cornell Univ, Dept Computat Biol, Ithaca, NY 14853 USA
[4] Cornell Univ, Weill Inst Cell & Mol Biol, Ithaca, NY 14853 USA
[5] Baidu Inc, Beijing 100085, Peoples R China
[6] Hunan Normal Univ, Hunan Prov Key Lab Intelligent Comp & Language Inf, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyp segmentation; Colonoscopy; Prior guidance; Distraction separation;
D O I
10.1016/j.eswa.2023.120434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In clinical practice, automatic polyp segmentation in colonoscopy images is important for computer-aided clinical diagnosis of colorectal cancer. Existing polyp segmentation methods still suffer from the challenges of false positive/negative distractions to distinguish polyps and normal tissues. In this paper, we propose a novel Distraction Separation Network (DSNet) that mines potential polyp regions from the low-level semantic features while segregating background regions. To support the proposed framework, we propose two modules, including the neighbor fusion module (NFM) and the distraction separation module (DSM). The neighbor fusion module first integrates high-level features to obtain initial segmentation results as the prior guidance map. Guided by the prior results, multiple distraction separation modules are then employed to capture multi-scale contextual information for eliminating distraction. By separating distractions on different levels, DSNet can progressively refine segmentation results. Extensive experiments show that DSNet outperforms state-of-the-art methods on six challenging benchmark datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] DUPLEX CONTEXTUAL RELATION NETWORK FOR POLYP SEGMENTATION
    Yin, Zijin
    Liang, Kongming
    Ma, Zhanyu
    Guo, Jun
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [32] RANet: A receptive aggregation network for polyp segmentation
    Ma, Dehua
    Zhu, Xiaoliang
    Li, Yanxiang
    Meng, Wenzhe
    Xu, Siping
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [33] Video Polyp Segmentation:A Deep Learning Perspective
    Ge-Peng Ji
    Guobao Xiao
    Yu-Cheng Chou
    Deng-Ping Fan
    Kai Zhao
    Geng Chen
    Luc Van Gool
    Machine Intelligence Research, 2022, 19 (06) : 531 - 549
  • [34] Fully Convolutional DenseNets for Polyp Segmentation in Colonoscopy
    Yu, Jieyao
    Pan, Haiwei
    Yin, Qi
    Bian, Xiaofei
    Cui, Qianna
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2019), 2019, : 306 - 311
  • [35] PEFNet: Positional Embedding Feature for Polyp Segmentation
    Nguyen-Mau, Trong-Hieu
    Trinh, Quoc-Huy
    Bui, Nhat-Tan
    Thi, Phuoc-Thao Vo
    Nguyen, Minh-Van
    Cao, Xuan-Nam
    Tran, Minh-Triet
    Nguyen, Hai-Dang
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 240 - 251
  • [36] AFANet: Adaptive feature aggregation for polyp segmentation
    Shao, Dangguo
    Yang, Haiqiong
    Liu, Cuiyin
    Ma, Lei
    MEDICAL ENGINEERING & PHYSICS, 2024, 125
  • [37] CRNet: Cascaded Refinement Network for polyp segmentation
    Wen, Xiaolan
    Zhang, Anwen
    Lin, Chuan
    Pang, Xintao
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (10)
  • [38] Polyp Segmentation using Generative Adversarial Network
    Poorneshwaran, J. M.
    Kumar, Santhosh S.
    Ram, Keerthi
    Joseph, Jayaraj
    Sivaprakasam, Mohanasankar
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 7201 - 7204
  • [39] CTNet: Contrastive Transformer Network for Polyp Segmentation
    Xiao, Bin
    Hu, Jinwu
    Li, Weisheng
    Pun, Chi-Man
    Bi, Xiuli
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (09) : 5040 - 5053
  • [40] Tackling Background Distraction in Video Object Segmentation
    Cho, Suhwan
    Lee, Heansung
    Lee, Minhyeok
    Park, Chaewon
    Jang, Sungjun
    Kim, Minjung
    Lee, Sangyoun
    COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 : 446 - 462