Polyp segmentation with distraction separation

被引:5
|
作者
Liu, Tongtong [1 ]
Ye, Xiongjun [2 ]
Hu, Kai [1 ]
Xiong, Dapeng [3 ,4 ]
Zhang, Yuan [1 ]
Li, Xuanya [5 ]
Gao, Xieping [6 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Beijing 100021, Peoples R China
[3] Cornell Univ, Dept Computat Biol, Ithaca, NY 14853 USA
[4] Cornell Univ, Weill Inst Cell & Mol Biol, Ithaca, NY 14853 USA
[5] Baidu Inc, Beijing 100085, Peoples R China
[6] Hunan Normal Univ, Hunan Prov Key Lab Intelligent Comp & Language Inf, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyp segmentation; Colonoscopy; Prior guidance; Distraction separation;
D O I
10.1016/j.eswa.2023.120434
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In clinical practice, automatic polyp segmentation in colonoscopy images is important for computer-aided clinical diagnosis of colorectal cancer. Existing polyp segmentation methods still suffer from the challenges of false positive/negative distractions to distinguish polyps and normal tissues. In this paper, we propose a novel Distraction Separation Network (DSNet) that mines potential polyp regions from the low-level semantic features while segregating background regions. To support the proposed framework, we propose two modules, including the neighbor fusion module (NFM) and the distraction separation module (DSM). The neighbor fusion module first integrates high-level features to obtain initial segmentation results as the prior guidance map. Guided by the prior results, multiple distraction separation modules are then employed to capture multi-scale contextual information for eliminating distraction. By separating distractions on different levels, DSNet can progressively refine segmentation results. Extensive experiments show that DSNet outperforms state-of-the-art methods on six challenging benchmark datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Polyp-Mamba: Polyp Segmentation with Visual Mamba
    Xu, Zhongxing
    Tang, Feilong
    Chen, Zhe
    Zhou, Zheng
    Wu, Weishan
    Yang, Yuyao
    Liang, Yu
    Jiang, Jiyu
    Cai, Xuyue
    Su, Jionglong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 510 - 521
  • [2] Polyp-SAM: Transfer SAM for Polyp Segmentation
    Li, Yuheng
    Hu, Mingzhe
    Yang, Xiaofeng
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [3] Semantic Polyp Generation for Improving Polyp Segmentation Performance
    Song, Hun
    Shin, Younghak
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2024, 44 (02) : 280 - 292
  • [4] Meta-Polyp: a baseline for efficient Polyp segmentation
    Trinh, Quoc-Huy
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 742 - 747
  • [5] DEEP LEARNING FOR POLYP SEGMENTATION
    Wang, Liansheng
    Xie, Cong
    Hu, Yanxing
    GUT, 2018, 67 : A84 - A85
  • [6] Polyp segmentation with convolutional MLP
    Yan Jin
    Yibiao Hu
    Zhiwei Jiang
    Qiufu Zheng
    The Visual Computer, 2023, 39 : 4819 - 4837
  • [7] An Efficient Polyp Segmentation Network
    Erol, Tugberk
    Sarikaya, Duygu
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [8] Polyp segmentation with convolutional MLP
    Jin, Yan
    Hu, Yibiao
    Jiang, Zhiwei
    Zheng, Qiufu
    VISUAL COMPUTER, 2023, 39 (10): : 4819 - 4837
  • [9] Polyp-LVT: Polyp segmentation with lightweight vision transformers
    Lin, Long
    Lv, Guangzu
    Wang, Bin
    Xu, Cunlu
    Liu, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [10] Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation
    Banik, Debapriya
    Roy, Kaushiki
    Bhattacharjee, Debotosh
    Nasipuri, Mita
    Krejcar, Ondrej
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70