Predicting of Daily PM2.5 Concentration Employing Wavelet Artificial Neural Networks Based on Meteorological Elements in Shanghai, China

被引:51
|
作者
Guo, Qingchun [1 ,2 ,3 ]
He, Zhenfang [1 ,2 ,4 ]
Wang, Zhaosheng [5 ]
机构
[1] Liaocheng Univ, Sch Geog & Environm, Liaocheng 252000, Peoples R China
[2] Liaocheng Univ, Inst Huanghe Studies, Liaocheng 252000, Peoples R China
[3] Inst Earth Environm, Chinese Acad Sci, State Key Lab Loess & Quaternary Geol, Xian 710061, Peoples R China
[4] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[5] Inst Geog Sci & Nat Resources Res, Chinese Acad Sci, Ecosyst Sci Data Ctr, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
关键词
PM2; 5; wavelet; artificial neural network; predicting; DNN; CNN; LSTM; COVID-19; epidemic; AIR-QUALITY; MODEL; REGRESSION; TRANSFORM; MACHINE;
D O I
10.3390/toxics11010051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anthropogenic sources of fine particulate matter (PM2.5) threaten ecosystem security, human health and sustainable development. The accuracy prediction of daily PM2.5 concentration can give important information for people to reduce their exposure. Artificial neural networks (ANNs) and wavelet-ANNs (WANNs) are used to predict daily PM2.5 concentration in Shanghai. The PM2.5 concentration in Shanghai from 2014 to 2020 decreased by 39.3%. The serious COVID-19 epidemic had an unprecedented effect on PM2.5 concentration in Shanghai. The PM2.5 concentration during the lockdown in 2020 of Shanghai is significantly reduced compared to the period before the lockdown. First, the correlation analysis is utilized to identify the associations between PM2.5 and meteorological elements in Shanghai. Second, by estimating twelve training algorithms and twenty-one network structures for these models, the results show that the optimal input elements for daily PM2.5 concentration predicting models were the PM2.5 from the 3 previous days and fourteen meteorological elements. Finally, the activation function (tansig-purelin) for ANNs and WANNs in Shanghai is better than others in the training, validation and forecasting stages. Considering the correlation coefficients (R) between the PM2.5 in the next day and the input influence factors, the PM2.5 showed the closest relation with the PM2.5 1 day lag and closer relationships with minimum atmospheric temperature, maximum atmospheric pressure, maximum atmospheric temperature, and PM2.5 2 days lag. When Bayesian regularization (trainbr) was used to train, the ANN and WANN models precisely simulated the daily PM2.5 concentration in Shanghai during the training, calibration and predicting stages. It is emphasized that the WANN1 model obtained optimal predicting results in terms of R (0.9316). These results prove that WANNs are adept in daily PM2.5 concentration prediction because they can identify relationships between the input and output factors. Therefore, our research can offer a theoretical basis for air pollution control.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Associations of daily mortality with short-term exposure to PM2.5 and its constituents in Shanghai, China
    Wang, Yiyi
    Shi, Zhihao
    Shen, Fuzhen
    Sun, Jinjin
    Huang, Lin
    Zhang, Hongliang
    Chen, Chen
    Li, Tiantian
    Hu, Jianlin
    CHEMOSPHERE, 2019, 233 : 879 - 887
  • [42] PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003-2015
    Chen, Youfang
    Zhou, Yimin
    Zhao, Xinyi
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2019, 14 (02):
  • [43] Characteristics of Particulate Pollution (PM2.5 and PM10) and Their Spacescale-Dependent Relationships with Meteorological Elements in China
    Li, Xiaodong
    Chen, Xuwu
    Yuan, Xingzhong
    Zeng, Guangming
    Leon, Tomas
    Liang, Jie
    Chen, Gaojie
    Yuan, Xinliang
    SUSTAINABILITY, 2017, 9 (12)
  • [44] Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
    McKendry, Ian G.
    Journal of the Air and Waste Management Association, 2002, 52 (09): : 1096 - 1101
  • [45] Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
    McKendry, IG
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2002, 52 (09): : 1096 - 1101
  • [46] MODELLING THE PM2.5 CONCENTRATION WITH ARTIFICIAL INTELLIGENCE-BASED ENSEMBLE APPROACH
    Umar, Ibrahim Khalil
    Yahya, Mukhtar Nuhu
    TRAKYA UNIVERSITY JOURNAL OF NATURAL SCIENCES, 2022, 23 (02) : 153 - 165
  • [47] Artificial neural networks for infectious diarrhea prediction using meteorological factors in Shanghai (China)
    Wang, Yongming
    Li, Jian
    Gu, Junzhong
    Zhou, Zili
    Wang, Zhijin
    APPLIED SOFT COMPUTING, 2015, 35 : 280 - 290
  • [48] Applying Artificial Neural Networks to Short-Term PM2.5 Forecasting Modeling
    Oprea, Mihaela
    Mihalache, Sanda Florentina
    Popescu, Marian
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2016, 2016, 475 : 204 - 211
  • [49] Research on prediction of environmental aerosol and PM2.5 based on artificial neural network
    Xianghong Wang
    Baozhen Wang
    Neural Computing and Applications, 2019, 31 : 8217 - 8227
  • [50] Research on prediction of environmental aerosol and PM2.5 based on artificial neural network
    Wang, Xianghong
    Wang, Baozhen
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 8217 - 8227