Double inertial Forward-Backward-Forward method with adaptive step-size for variational inequalities with quasi-monotonicity

被引:2
|
作者
Wang, Ke [1 ]
Wang, Yuanheng [1 ]
Shehu, Yekini [1 ]
Jiang, Bingnan [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Double inertial; Forward-Backward-Forward methods; Variational inequality; Weak and strong convergence; convergence; CONVERGENCE; WEAK;
D O I
10.1016/j.cnsns.2024.107924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper introduce a new inertial forward-backward-forward method with adaptive step size constructed by double inertial extrapolation steps and relaxations to solve variational inequalities with quasi-monotonicity in real Hilbert spaces. We obtain weak and strong convergence results for our propose inertial Forward-Backward-Forward method under some mild conditions. Linear convergence results under a special case of our proposed method are given. Preliminary numerical results show that our proposed method is competitive with other related methods in the literature.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Strong Convergence of an Inertial Extragradient Method with an Adaptive Nondecreasing Step Size for Solving Variational Inequalities
    Linh, Nguyen Xuan
    Thong, Duong Viet
    Cholamjiak, Prasit
    Tuan, Pham Anh
    Van Long, Luong
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 795 - 812
  • [22] STRONG CONVERGENCE OF AN INERTIAL EXTRAGRADIENT METHOD WITH AN ADAPTIVE NONDECREASING STEP SIZE FOR SOLVING VARIATIONAL INEQUALITIES
    Nguyen Xuan LINH
    Duong Viet THONG
    Prasit CHOLAMJIAK
    Pham Anh TUAN
    Luong Van LONG
    Acta Mathematica Scientia, 2022, 42 (02) : 795 - 812
  • [23] Strong Convergence of an Inertial Extragradient Method with an Adaptive Nondecreasing Step Size for Solving Variational Inequalities
    Nguyen Xuan Linh
    Duong Viet Thong
    Prasit Cholamjiak
    Pham Anh Tuan
    Luong Van Long
    Acta Mathematica Scientia, 2022, 42 : 795 - 812
  • [24] ADPCM USING VECTOR PREDICTOR AND FORWARD ADAPTIVE QUANTIZER WITH STEP-SIZE PREDICTION
    WONG, KHJ
    STEELE, R
    ELECTRONICS LETTERS, 1985, 21 (02) : 74 - 75
  • [25] Forward–Backward Splitting Method for Solving a System of Quasi-Variational Inclusions
    Shih-Sen Chang
    Ching-Feng Wen
    Jen-Chih Yao
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2169 - 2189
  • [26] Forward-Backward Splitting Method for Solving a System of Quasi-Variational Inclusions
    Chang, Shih-Sen
    Wen, Ching-Feng
    Yao, Jen-Chih
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2169 - 2189
  • [27] Extension of forward-reflected-backward method to non-convex mixed variational inequalities
    Izuchukwu, Chinedu
    Shehu, Yekini
    Okeke, Chibueze C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (01) : 123 - 140
  • [28] Extension of forward-reflected-backward method to non-convex mixed variational inequalities
    Chinedu Izuchukwu
    Yekini Shehu
    Chibueze C. Okeke
    Journal of Global Optimization, 2023, 86 : 123 - 140
  • [29] A new adaptive variable step-size blind equalization algorithm based on forward neural network
    Zhang, LY
    Li, Q
    Teng, JF
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON MAGNETIC INDUSTRY (ISMI'04) & FIRST INTERNATIONAL SYMPOSIUM ON PHYSICS AND IT INDUSTRY (ISITI'04), 2005, : 295 - 297
  • [30] A generalized forward–backward splitting method for solving a system of quasi variational inclusions in Banach spaces
    Shih-sen Chang
    Ching-Feng Wen
    Jen-Chih Yao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 729 - 747