CALCULUS OF VARIATIONS AND OPTIMAL CONTROL WITH GENERALIZED DERIVATIVE

被引:1
|
作者
Barreto, Maria N. F. [1 ]
Frederico, Gastao S. F. [1 ]
Sousa, Jose Vanterler Da C. [2 ]
Valdes, Juan E. Napoles [3 ]
机构
[1] Univ Fed Ceara, Campus Russas, Russas, Brazil
[2] Fed Univ ABC, Santo Andre, SP, Brazil
[3] Univ Nacl Nordeste, Fac Ciencias Exactas & Nat & Agrimensura, Corrientes, Argentina
关键词
calculus of variations; optimal control; Noether's theorem; time-fractional Schrodinger equation; FRACTIONAL CALCULUS; NOETHERS THEOREM; EQUATIONS; DEFINITION; MECHANICS;
D O I
10.1216/rmj.2023.53.1337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the recently defined generalized derivative, we present a generalized formulation of variation of calculus, which includes the classical and conformable formulation as particular cases. In the first part of the article, through the properties of this generalized derivative, we discuss the generalized versions of the Bois-Reymond lemma, a Tonelli-type existence theorem, Euler-Lagrange equation, d'Alembert principle, du Bois-Reymond optimality condition and Noether's theorem. In the second part, we discuss the Picard-Lindelof theorem, Gronwall's inequality, Pontryagin's maximum principle and Noether's principle for optimal control. We end with an application involving the time fractional Schrodinger equation.
引用
收藏
页码:1337 / 1370
页数:34
相关论文
共 50 条
  • [41] PDE MODELS FOR DEEP NEURAL NETWORKS: LEARNING THEORY, CALCULUS OF VARIATIONS AND OPTIMAL CONTROL
    Markowich, Peter
    Portaro, Simone
    arXiv,
  • [42] Path planning and optimal control of a 4WS vehicle using calculus of variations
    Tourajizadeh, Hami
    Sarvari, Mohsen
    Afshari, Samira
    ACTA MECHANICA SINICA, 2024, 40 (02)
  • [43] Fractional Calculus of Variations for Composed Functionals with Generalized Derivatives
    Almeida, Ricardo
    FRACTAL AND FRACTIONAL, 2025, 9 (03)
  • [44] Generalized Euler–Lagrange equation for nonsmooth calculus of variations
    M. H. Noori Skandari
    A. V. Kamyad
    S. Effati
    Nonlinear Dynamics, 2014, 75 : 85 - 100
  • [45] Control, optimisation and calculus of variations - Preface
    Blum, J
    Coron, JM
    Fonseca, I
    Zuazua, E
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : III - v
  • [46] Fractional Optimal Economic Control Problem Described by the Generalized Fractional Order Derivative
    Thiao, Abdou
    Sene, Ndolane
    4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 36 - 48
  • [47] FRACTIONAL VECTOR CALCULUS IN THE FRAME OF A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Gambo, Yusuf Ya'u
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 219 - 228
  • [48] A Planning Problem Combining Calculus of Variations and Optimal Transport
    G. Carlier
    A. Lachapelle
    Applied Mathematics & Optimization, 2011, 63 : 1 - 9
  • [49] A Planning Problem Combining Calculus of Variations and Optimal Transport
    Carlier, G.
    Lachapelle, A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (01): : 1 - 9
  • [50] AUTOMATIC SOLUTION OF OPTIMAL-CONTROL PROBLEMS .1. SIMPLEST PROBLEM IN THE CALCULUS OF VARIATIONS
    KALABA, R
    SPINGARN, K
    APPLIED MATHEMATICS AND COMPUTATION, 1984, 14 (02) : 131 - 148