CALCULUS OF VARIATIONS AND OPTIMAL CONTROL WITH GENERALIZED DERIVATIVE

被引:1
|
作者
Barreto, Maria N. F. [1 ]
Frederico, Gastao S. F. [1 ]
Sousa, Jose Vanterler Da C. [2 ]
Valdes, Juan E. Napoles [3 ]
机构
[1] Univ Fed Ceara, Campus Russas, Russas, Brazil
[2] Fed Univ ABC, Santo Andre, SP, Brazil
[3] Univ Nacl Nordeste, Fac Ciencias Exactas & Nat & Agrimensura, Corrientes, Argentina
关键词
calculus of variations; optimal control; Noether's theorem; time-fractional Schrodinger equation; FRACTIONAL CALCULUS; NOETHERS THEOREM; EQUATIONS; DEFINITION; MECHANICS;
D O I
10.1216/rmj.2023.53.1337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the recently defined generalized derivative, we present a generalized formulation of variation of calculus, which includes the classical and conformable formulation as particular cases. In the first part of the article, through the properties of this generalized derivative, we discuss the generalized versions of the Bois-Reymond lemma, a Tonelli-type existence theorem, Euler-Lagrange equation, d'Alembert principle, du Bois-Reymond optimality condition and Noether's theorem. In the second part, we discuss the Picard-Lindelof theorem, Gronwall's inequality, Pontryagin's maximum principle and Noether's principle for optimal control. We end with an application involving the time fractional Schrodinger equation.
引用
收藏
页码:1337 / 1370
页数:34
相关论文
共 50 条