Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading

被引:11
|
作者
Zhou, Kaile [1 ,2 ,3 ]
Chu, Yibo [1 ,2 ]
Hu, Rong [1 ,3 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Anhui Prov Key Lab Philosophy & Social Sci Smart M, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Supply -demand interaction; Supply and demand uncertainty; Peer -to -peer energy trading; Supply and demand matching; SYSTEM;
D O I
10.1016/j.energy.2023.129436
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the penetration of large amounts of renewable energy resources into energy system, the interaction between energy supply and demand has become more complex and diverse. The complexity and diversity make it more difficult to achieve real-time, efficient, accurate and dynamic matching of energy supply and demand. Therefore, the study proposes an efficient energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading. First, to reduce the impact of supply and demand uncertainty on the energy supply and demand matching, gate recurrent unit and long short-term memory models are used to forecast power generation and consumption. Then, based on the results of forecasting, an energy supply-demand interaction model is proposed to assist the energy system in achieving dynamic energy supply-demand matching. Finally, the effectiveness of the proposed energy supply-demand interaction model has been verified through experiments. The proposed energy supply-demand interaction model that considers supply and demand uncertainty and economic benefits helps to better achieve transparent, efficient, stable, and sustainable matching of supply and demand. This study can reduce the impact of supply and demand uncertainty by forecasting power generation and consumption. In addition, this study considers the preferences of prosumers in their trading, reduces the cost of electricity for prosumers, and realizes the profitability of multiple subjects involved in the trading.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Bilateral Contract Networks for Peer-to-Peer Energy Trading
    Morstyn, Thomas
    Teytelboym, Alexander
    McCulloch, Malcolm D.
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (02) : 2026 - 2035
  • [42] Review of Existing Peer-to-Peer Energy Trading Projects
    Zhang, Chenghua
    Wu, Jianzhong
    Long, Chao
    Cheng, Meng
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2563 - 2568
  • [43] Peer-to-peer energy trading using blockchain technology
    Sitharthan, R.
    Padmanaban, Sanjeevikumar
    Dhanabalan, Shanmuga Sundar
    Rajesh, M.
    ENERGY REPORTS, 2022, 8 : 2348 - 2350
  • [44] Distributed Ledger Technologies for Peer-to-Peer Energy Trading
    Jogunola, Olamide
    Hammoudeh, Mohammad
    Anoh, Kelvin
    Adebisi, Bamidele
    2020 IEEE ELECTRIC POWER AND ENERGY CONFERENCE (EPEC), 2020,
  • [45] Business Model for Shared Energy Generation with Peer-To-Peer Trading via Blockchain
    Cardoso, Beatriz Batista
    Lodetti, Paula Zenni
    Simao, Maileen Schwarz
    Izumida Martins, Marcos A.
    Ulhoa, Luis Gustavo O. B.
    Roncalio, Luciano Benvenuti
    Pinheiro, Lucas de Paula A.
    Santos, Orlando da Silva
    2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC), 2022,
  • [46] Electric Vehicle Peer-to-Peer Energy Trading Model Based on SMES and Blockchain
    Li, Zugang
    Chen, Shi
    Zhou, Buxiang
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (08)
  • [47] Peer-to-peer energy trading strategy for prosumers based on model predictive control
    Zhou W.
    Gao Y.
    Peng F.
    Wu J.
    Dang W.
    Liu Y.
    Wang Z.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (09): : 1 - 10
  • [48] Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage
    Liu, Jia
    Yang, Hongxing
    Zhou, Yuekuan
    APPLIED ENERGY, 2021, 298
  • [49] Dynamic Modeling and Optimization of Energy Storage in Peer-to-Peer Energy Trading Systems
    Xie, Pengcheng
    Li, Chunzhong
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (02):
  • [50] Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management
    Evens, Maarten
    Ercoli, Patricia
    Arteconi, Alessia
    ENERGIES, 2023, 16 (18)