Characterizations of Complex Finsler Metrics

被引:2
|
作者
Li, Hongjun [1 ]
Xia, Hongchuan [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Finsler connection; Canonical connection; Holomorphic sectional curvature tensor; Balanced complex Finsler metric; Rund Kahler-Finsler-like metric; CONNECTIONS;
D O I
10.1007/s12220-023-01272-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Munteanu (Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publishers, Dordrecht, 2004) defined the canonical connection associated to a strongly pseudoconvex complex Finsler manifold (M, F). We first prove that the holomorphic sectional curvature tensors of the canonical connection coincide with those of the Chern-Finsler connection associated to F if and only if F is a Kahler-Finsler metric. We also investigate the relationship of the Ricci curvatures (resp. scalar curvatures) of these two connections when M is compact. As an application, two characterizations of balanced complex Finsler metrics are given. Next, we obtain a sufficient and necessary condition for a balanced complex Finsler metric to be Kahler-Finsler. Finally, we investigate conformal transformations of a balanced complex Finsler metric.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] On U(n)-invariant strongly convex complex Finsler metrics
    Wang, Kun
    Xia, Hongchuan
    Zhong, Chunping
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (11) : 2461 - 2478
  • [22] Affinely equivalent Kahler-Finsler metrics on a complex manifold
    Yan RongMu
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (04) : 731 - 738
  • [23] On U(n)-invariant strongly convex complex Finsler metrics
    Kun Wang
    Hongchuan Xia
    Chunping Zhong
    Science China Mathematics, 2021, 64 : 2461 - 2478
  • [24] Deformations of Finsler metrics
    Anastasiei, M
    Shimada, H
    FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 53 - 65
  • [25] On Einstein Finsler metrics
    Ulgen, Semail
    Sevim, Esra Sengelen
    Hacinliyan, Irma
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (09)
  • [26] Generalization of Finsler metrics on the product of Finsler manifolds
    Sadighi, Akbar
    Khatamy, R. Chavosh
    Toomanian, Megerdich
    MATHEMATICAL SCIENCES, 2018, 12 (04) : 243 - 248
  • [27] Generalization of Finsler metrics on the product of Finsler manifolds
    Akbar Sadighi
    R. Chavosh Khatamy
    Megerdich Toomanian
    Mathematical Sciences, 2018, 12 : 243 - 248
  • [28] Finsler metrics and CPT
    Sarkar, Sarben
    GROUP 28: PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRY: PROCEEDINGS OF THE 28TH INTERNATIONAL COLLOQUIUM ON GROUP-THEORETICAL METHODS IN PHYSICS, 2011, 284
  • [29] Invariant finsler metrics on homogeneous manifolds: II. Complex structures
    Deng, SQ
    Hou, ZX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (11): : 2599 - 2609
  • [30] Affinely equivalent Khler-Finsler metrics on a complex manifold
    YAN RongMu School of Mathematical Science
    ScienceChina(Mathematics), 2012, 55 (04) : 727 - 734