Characterizations of Complex Finsler Metrics

被引:2
|
作者
Li, Hongjun [1 ]
Xia, Hongchuan [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Finsler connection; Canonical connection; Holomorphic sectional curvature tensor; Balanced complex Finsler metric; Rund Kahler-Finsler-like metric; CONNECTIONS;
D O I
10.1007/s12220-023-01272-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Munteanu (Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publishers, Dordrecht, 2004) defined the canonical connection associated to a strongly pseudoconvex complex Finsler manifold (M, F). We first prove that the holomorphic sectional curvature tensors of the canonical connection coincide with those of the Chern-Finsler connection associated to F if and only if F is a Kahler-Finsler metric. We also investigate the relationship of the Ricci curvatures (resp. scalar curvatures) of these two connections when M is compact. As an application, two characterizations of balanced complex Finsler metrics are given. Next, we obtain a sufficient and necessary condition for a balanced complex Finsler metric to be Kahler-Finsler. Finally, we investigate conformal transformations of a balanced complex Finsler metric.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Characterizations of Complex Finsler Metrics
    Hongjun Li
    Hongchuan Xia
    The Journal of Geometric Analysis, 2023, 33
  • [2] Characterizations of complex Finsler connections and weakly complex Berwald metrics
    Sun, Liling
    Zhong, Chunping
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (05) : 648 - 671
  • [3] On conformal complex Finsler metrics
    Hongjun Li
    Chunhui Qiu
    Hongchuan Xia
    Guozhu Zhong
    Science China(Mathematics), 2022, 65 (07) : 1517 - 1530
  • [4] On conformal complex Finsler metrics
    Hongjun Li
    Chunhui Qiu
    Hongchuan Xia
    Guozhu Zhong
    Science China Mathematics, 2022, 65 : 1517 - 1530
  • [5] Deformation of complex Finsler metrics
    Szasz-Friedl, Annamaria
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 229 - 244
  • [6] On conformal complex Finsler metrics
    Li, Hongjun
    Qiu, Chunhui
    Xia, Hongchuan
    Zhong, Guozhu
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (07) : 1517 - 1530
  • [7] Projective complex Finsler metrics
    Gheorghe Munteanu
    Periodica Mathematica Hungarica, 2004, 48 (1-2) : 141 - 150
  • [8] The Characterizations on a Class of Weakly Weighted Einstein–Finsler Metrics
    Xinyue Cheng
    Hong Cheng
    The Journal of Geometric Analysis, 2023, 33
  • [9] The Schwarzian derivative and complex Finsler metrics
    Krushkal, SL
    Complex Analysis and Dynamical Systems II, 2005, 382 : 243 - 262
  • [10] On a Class of Smooth Complex Finsler Metrics
    Hongchuan Xia
    Chunping Zhong
    Results in Mathematics, 2017, 71 : 657 - 686