Dynamic graph attention networks for point cloud landslide segmentation

被引:3
|
作者
Wei, Ruilong [1 ]
Ye, Chengming [1 ]
Ge, Yonggang [2 ]
Li, Yao [3 ]
Li, Jonathan [4 ,5 ]
机构
[1] Chengdu Univ Technol, Key Lab Earth Explorat & Informat Technol, Minist Educ, Chengdu 610059, Peoples R China
[2] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
[3] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[4] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Point cloud; Deep learning; Landslide segmentation; Remote sensing;
D O I
10.1016/j.jag.2023.103542
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate landslide segmentation is crucial for obtaining damage information in disaster mitigation and relief efforts. This study aims to develop a deep learning network for accurate point cloud landslide segmentation. The proposed dynamic graph attention network (DGA-Net) has four steps. First, the down-sampling and neighbor search are applied to generate the samples that effectively represent the relevant landslide information. Second, the edge features of neighbor points are constructed based on graph structure to extract and enhance point cloud features. Third, the attention mechanism assigns adaptive weights to edge features and aggregates them into new point features. Fourth, the graph structure, edge features, and attention weights are dynamically updated through the hierarchical structures, which enable an expanded receptive field. In the upper reach of the Jinsha River, point clouds were prepared for landslide segmentation. The controlled experiments were designed for effectiveness evaluation. The results reported that proposed DGA-Net achieved the highest mean Intersection over Union (mIoU) of 0.743 and F1-score of 0.786, which was over 6.7% and 3.6% mIoU higher than shallow machine learning and other deep learning models. Besides, we analyzed the effect of super parameters in sampling strategy and the segmentation threshold in prediction stage on the model performance. The results showed that the samples with suitable sampling diameters and appropriate neighboring points are beneficial for landslide segmentation, and using optimal thresholds to segment stacked multiple prediction values can improve mIoU by 6%. Furthermore, the visualized feature maps revealed that the proposed model can index landslide points in feature space, which is beneficial to construct graph structures and use attention to enhance features. Comparative studies on the above experiments proved the superiority of the proposed method for landslide segmentation. We hope that our method and research results can contribute to post-disaster relief efforts.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] RGCNN: Regularized Graph CNN for Point Cloud Segmentation
    Te, Gusi
    Hu, Wei
    Guo, Zongming
    Zheng, Amin
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 746 - 754
  • [32] Dynamic Graph Segmentation for Deep Graph Neural Networks
    Kang, Johan Kok Zhi
    Yang, Suwei
    Venkatesan, Suriya
    Tan, Sien Yi
    Cheng, Feng
    He, Bingsheng
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4601 - 4611
  • [33] Dual Attention Network for Point Cloud Classification and Segmentation
    Zhou, Ce
    Xie, Yuesong
    He, Xindong
    Yuan, Ting
    Ling, Qiang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6482 - 6486
  • [34] Point cloud segmentation of crane parts using dynamic graph CNN for crane collision avoidance
    Jeong H.
    Hong H.
    Park G.
    Won M.
    Kim M.
    Yu H.
    Journal of Computing Science and Engineering, 2019, 13 (03) : 99 - 106
  • [35] DGPolarNet: Dynamic Graph Convolution Network for LiDAR Point Cloud Semantic Segmentation on Polar BEV
    Song, Wei
    Liu, Zhen
    Guo, Ying
    Sun, Su
    Zu, Guidong
    Li, Maozhen
    REMOTE SENSING, 2022, 14 (15)
  • [36] Dynamic graph convolution and mixed attention mechanism based ship point cloud target detection
    Zhou, Yi
    Zhang, Wenkai
    Min, Yuwei
    Yang, Jianfeng
    Yu, Tianqi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [37] Point Cloud Upsampling Network Incorporating Dynamic Graph Convolution and Multi-Head Attention
    Yang, Xiaoping
    Chen, Fei
    Li, Zhenhua
    Liu, Guanghui
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (04):
  • [38] A Graph Aggregation Convolution and Attention Mechanism Based Semantic Segmentation Method for Sparse Lidar Point Cloud Data
    Zheng, Tong
    Chen, Jialun
    Feng, Wenbin
    Yu, Chongchong
    IEEE ACCESS, 2024, 12 : 10459 - 10469
  • [39] Point Cloud Instance Segmentation Method Based on Superpoint Graph
    Wang Z.
    Yu Z.
    Wei G.
    Sun Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2020, 48 (09): : 1377 - 1384
  • [40] Graph Convolution Network with Double Filter for Point Cloud Segmentation
    Li, Wenju
    Ma, Qianwen
    Tian, Wenchao
    Na, Xinyuan
    2020 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS 2020), 2020, : 168 - 173