Inducing the Preferential Growth of Zn (002) Plane for Long Cycle Aqueous Zn-Ion Batteries

被引:196
|
作者
Zhang, Huangwei [1 ]
Zhong, Yun [1 ]
Li, Jianbo [1 ]
Liao, Yaqi [1 ]
Zeng, Jialiu [1 ]
Shen, Yue [1 ]
Yuan, Lixia [1 ]
Li, Zhen [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
BMIm(+) ions; crystallographic orientation; electrolyte additives; Zn dendrites; Zn-ion batteries; DENDRITE FORMATION; ZINC ANODE; CORROSION;
D O I
10.1002/aenm.202203254
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Uncontrolled growth of Zn dendrites is the main reason for the short-circuit failure of aqueous Zn-ion batteries. Using electrolyte additives to manipulate the crystal growth is one of the most convenient strategies to mitigate the dendrite issue. However, most additives would be unstable during cycling due to the structural reconstruction of the deposition layer. Herein, it is proposed to use 1-butyl-3-methylimidazolium cation (BMIm(+) ion) as an electrolyte additive, which could steadily induce the preferential growth of (002) plane and inhibit the formation of Zn dendrites. Specifically, BMIm(+) ion will be preferentially adsorbed on (100) and (101) planes of Zn anodes, forcing Zn2+ ion to deposit on the (002) plane, thus inducing the preferential growth of the (002) plane and forming a flat and compact deposition layer. As a result, the Zn anode cycles for 1000 h at10 mA cm(-2) and 10 mAh cm(-2) as well as a high Coulombic efficiency of 99.8%. Meanwhile, the NH4V4O10||Zn pouch cell can operate stably for 240 cycles at 0.4 A g(-1). The BMIm(+) ion additive keeps a stable effect on the structural reconstruction of the Zn anode during the prolonged cycling.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Aqueous Zn-ion batteries: Cathode materials and analysis
    Shang, Yuan
    Kundu, Dipan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [12] Room-Temperature Liquid-Metal Coated Zn Electrode for Long Life Cycle Aqueous Rechargeable Zn-Ion Batteries
    Kidanu, Weldejewergis Gebrewahid
    Yang, Hyewon
    Park, Saemin
    Hur, Jaehyun
    Kim, Il Tae
    BATTERIES-BASEL, 2022, 8 (11):
  • [13] Design of Zn anode protection materials for mild aqueous Zn-ion batteries
    Zhang, Yuejuan
    Bi, Songshan
    Niu, Zhiqiang
    Zhou, Weiya
    Xie, Sishen
    ENERGY MATERIALS, 2022, 2 (02):
  • [14] Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries
    Zheng, Jiaxian
    Huang, Zihao
    Ming, Fangwang
    Zeng, Ye
    Wei, Binbin
    Jiang, Qiu
    Qi, Zhengbing
    Wang, Zhoucheng
    Liang, Hanfeng
    SMALL, 2022, 18 (21)
  • [15] Constructing Three-Dimensional Topological Zn Deposition for Long-Life Aqueous Zn-Ion Batteries
    Yan, Mengdie
    Huang, Fanyang
    Zhao, Xuesong
    Zhang, Fenglin
    Dong, Ning
    Jiao, Shuhong
    Cao, Ruiguo
    Pan, Huilin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (45) : 51010 - 51017
  • [16] Regulating Zn-ion solvation structure and Zn(002) deposition for stable Zn anode
    Zong, Quan
    Yu, Yifei
    Liu, Chaofeng
    Kang, Qiaoling
    Lv, Bo
    Tao, Daiwen
    Zhang, Jingji
    Wang, Jiangying
    Zhang, Qilong
    Cao, Guozhong
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [17] Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies
    Hoang Huy, Vo Pham
    Hieu, Luong Trung
    Hur, Jaehyun
    NANOMATERIALS, 2021, 11 (10)
  • [18] Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics
    Liu, Jun (msjliu@scut.edu.cn); Liu, Jun (msjliu@scut.edu.cn), 1600, Wiley-VCH Verlag (27):
  • [19] A High Capacity Bilayer Cathode for Aqueous Zn-Ion Batteries
    Zhu, Kaiyue
    Wu, Tao
    Huang, Kevin
    ACS NANO, 2019, 13 (12) : 14447 - 14458
  • [20] Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries
    Tang, Yongwei
    Li, Jin-Hong
    Xu, Chen-Liang
    Liu, Mengting
    Xiao, Bing
    Wang, Peng-Fei
    CARBON NEUTRALIZATION, 2023, 2 (02): : 186 - 212