Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers

被引:12
|
作者
Kang, Zhenye [1 ]
Yang, Gaoqiang [2 ]
Mo, Jingke [3 ]
机构
[1] Hainan Univ, Sch Chem & Chem Engn, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Dept Energy & Power Engn, Changsha 410082, Peoples R China
[3] Fudan Univ, Dept Aeronaut & Astronaut, Shanghai 200433, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Electrodes; Water splitting; Oxygen evolution reaction; Membrane electrode assembly; Proton exchange membrane water electrolysis; PERFORMANCE; HYDROGEN; NANOPARTICLES; CATALYST; ELECTROCATALYSTS; IR; EFFICIENCY; STABILITY; LAYERS; CELLS;
D O I
10.1016/j.renene.2024.120159
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Noble metal electrocatalysts are highly preferred for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolysis cell (PEMWE) due to their exceptional catalytic activity and stability. This study proposes a novel thin electrode (NTE) design to enhance the performance of noble metal electrocatalysts for the OER in PEMWE. The NTE utilizes a thin porous transport layer for the direct deposition of Iridium (Ir). Unlike conventional gas diffusion electrodes with deep porous structures that underutilize the catalyst due to limited triple-phase boundary conditions, the flat NTEs with straight-through pores overcome this restriction. The paper compares two deposition methods, electroplating and sputter coating. The in-situ electrochemical properties of NTEs with varying Ir loadings (0.06-1.01 mg cm(-2)) are investigated. The electroplated NTE demonstrates excellent mass activity, achieving 5.05 A mg(-1) at 1.6 V and 80 degrees C. The NTE exhibits a simple fabrication process and low cost while significantly improving catalyst mass activity. Additionally, the NTE reduces electrode thickness from hundreds of micrometers to only 25 mu m. This concept holds great promise for the future advancement of compact and high-efficiency PEMWE electrodes, resulting in reduced cost, volume, and mass of both the electrode itself and the overall system.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective
    Zhu, Yiming
    Li, Ling
    Cheng, Hongfei
    Ma, Jiwei
    JACS AU, 2024, 4 (12): : 4639 - 4654
  • [32] Ir Nanoparticles with Enhanced Electrocatalytic Properties for the Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis
    Pham, Thy San
    Pham, Hong Hanh
    Do, Chi Linh
    Anh, Tuyet Ngo Thi
    Pham, Tuan Anh
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (03) : 1239 - 1246
  • [33] Ruthenium-lead oxide for acidic oxygen evolution reaction in proton exchange membrane water electrolysis
    Chen, Feng-Yang
    Qiu, Chang
    Wu, Zhen-Yu
    Wi, Tae-Ung
    Finfrock, Y. Zou
    Wang, Haotian
    NANO RESEARCH, 2024, 17 (10) : 8671 - 8677
  • [34] Modeling Mechanical Behavior of Membranes in Proton Exchange Membrane Water Electrolyzers
    Kink, Julian
    Ise, Martin
    Bensmann, Boris
    Hanke-Rauschenbach, Richard
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (05)
  • [35] HYDROGEN OXYGEN PROTON-EXCHANGE MEMBRANE FUEL-CELLS AND ELECTROLYZERS
    BALDWIN, R
    PHAM, M
    LEONIDA, A
    MCELROY, J
    NALETTE, T
    JOURNAL OF POWER SOURCES, 1990, 29 (3-4) : 399 - 412
  • [36] Bi-directional strains increase the performance of iridium oxide nanoparticles towards the acidic oxygen evolution reaction in proton exchange membrane electrolyzers
    Wu, Xiao
    Hao, Shaoyun
    He, Yi
    Lei, Lecheng
    Zhang, Xingwang
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (23) : 6892 - 6900
  • [37] Oxygen electrode for proton exchange membrane fuel cell
    Lu, L.H.
    Jin, L.H.
    Wang, J.T.
    Dianyuan Jishu/Chinese Journal of Power Sources, 2001, 25 (02):
  • [38] Hybrid perovskites as oxygen evolution electrocatalysts for high-performance anion exchange membrane water electrolyzers
    Chen, Di
    Park, Yoo Sei
    Liu, Fan
    Fang, Liyang
    Duan, Chuancheng
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [39] Nonprecious Bimetallic Iron-Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution Reaction in Proton Exchange Membrane Electrolyzers
    Morozan, Adina
    Johnson, Hannah
    Roiron, Camille
    Genay, Ghislain
    Aldakov, Dmitry
    Ghedjatti, Ahmed
    Nguyen, Chuc T.
    Tran, Phong D.
    Kinge, Sachin
    Artero, Vincent
    ACS CATALYSIS, 2020, 10 (24): : 14336 - 14348
  • [40] Spinel-type high-entropy oxides for enhanced oxygen evolution reaction activity in anion exchange membrane water electrolyzers
    Montalto, Manuela
    Freitas, Williane da Silva
    Mastronardo, Emanuela
    Ficca, Valerio C. A.
    Placidi, Ernesto
    Baglio, Vincenzo
    Mosca, Erminia
    Lo Vecchio, Carmelo
    Gatto, Irene
    Mecheri, Barbara
    D'Epifanio, Alessandra
    CHEMICAL ENGINEERING JOURNAL, 2025, 507