High-order models for convection-diffusion-reaction transport in multiscale porous media

被引:5
|
作者
Zuo, Hong [1 ]
Yin, Ying [2 ,3 ]
Yang, Zhiqiang [4 ]
Deng, Shouchun [1 ]
Li, Haibo [1 ]
Liu, Haiming [5 ]
机构
[1] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
[2] Beijing Inst Technol, Shenzhen Automot Res Inst, Shenzhen 518118, Guangdong, Peoples R China
[3] Beijing Inst Technol, Natl Engn Res Ctr Elect Vehicles, Beijing 100081, Peoples R China
[4] Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R China
[5] Kunming Univ Sci & Technol, Fac Civil Engn & Mech, Kunming, Peoples R China
关键词
Mass transfer; Multiscale porous media; Convection-diffusion; -reaction; High -order multiscale models; Computational fluid dynamics (CFD); PARTICLES;
D O I
10.1016/j.ces.2023.119663
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Developing highly accurate models for predicting the convection-diffusion-reaction (CDR) transport in hierarchical porous media with strong heterogeneities on multiple scales is crucial but not yet available. In this work, an innovative high-order multiscale computational framework is developed to capture the local and global variation characteristics of flow fields and reactant concentration at multiple scales. The homogenized solutions and macro-meso high-order solutions are established by the formal two-scale asymptotic analysis. By directly expanding the mesoscopic cell functions to the microscopic levels, the three-scale high-order models are built by assembling the meso-micro high-order expansions of mesoscopic cell functions and macro-meso low/high-order models. The present approaches follow the reverse thought process of the reiteration homogenization method, and provide a very innovative way to develop highly accurate and efficient solutions for the CDR coupling problems in multiscale porous media. The effectiveness and accuracy of the proposed multiscale models are validated by several representative cases.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations
    Qingfang Liu
    Yanren Hou
    Lei Ding
    Qingchang Liu
    Acta Applicandae Mathematicae, 2014, 130 : 115 - 134
  • [42] Construction of a natural norm for the convection-diffusion-reaction operator
    Sangalli, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2004, 7B (02): : 335 - 355
  • [43] On algebraically stabilized schemes for convection-diffusion-reaction problems
    John, Volker
    Knobloch, Petr
    NUMERISCHE MATHEMATIK, 2022, 152 (03) : 553 - 585
  • [44] DIFFUSION, CONVECTION, ADSORPTION, AND REACTION OF CHEMICALS IN POROUS-MEDIA
    HORNUNG, U
    JAGER, W
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (02) : 199 - 225
  • [45] A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations
    Liu, Qingfang
    Hou, Yanren
    Ding, Lei
    Liu, Qingchang
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 115 - 134
  • [46] INTRAPARTICLE CONVECTION, DIFFUSION AND ZERO ORDER REACTION IN POROUS CATALYSTS
    Rodrigues, Alirio E.
    Orfao, Jose M.
    Zoulalian, Andre
    CHEMICAL ENGINEERING COMMUNICATIONS, 1984, 27 (5-6) : 327 - 337
  • [47] A stabilization technique for coupled convection-diffusion-reaction equations
    Hernandez, H.
    Massart, T. J.
    Peerlings, R. H. J.
    Geers, M. G. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (01) : 43 - 65
  • [48] Non-Fickian convection–diffusion models in porous media
    Sílvia Barbeiro
    Somayeh Gh. Bardeji
    José A. Ferreira
    Luís Pinto
    Numerische Mathematik, 2018, 138 : 869 - 904
  • [49] Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
    Song, Hongqing
    Wang, Yuhe
    Wang, Jiulong
    Li, Zhengyi
    CHEMICAL PHYSICS LETTERS, 2016, 661 : 246 - 250
  • [50] INVERSE PROBLEM OF IDENTIFICATION OF DIFFUSION COEFFICIENT IN CONVECTION-DIFFUSION-REACTION EQUATION
    Vakhitov, I. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : C290 - C306