A novel rolling bearing fault diagnosis method based on Adaptive Denoising Convolutional Neural Network under noise background

被引:20
|
作者
Wang, Qiang [1 ]
Xu, Feiyun [1 ,2 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing, Peoples R China
[2] Southeast Univ, 2 Southeast Univ Rd, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Adaptive denoising; Convolutional Neural Network (CNN); Maximum Overlap Discrete Wavelet Packet; Transform (MODWPT); EMPIRICAL MODE DECOMPOSITION; TRANSFORM;
D O I
10.1016/j.measurement.2023.113209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, significant progress has been made in intelligent fault diagnosis algorithms for rolling bearings. However, their real industrial application performance is hindered by challenges related to noise and variable load conditions. To solve this problem, we proposed an adaptive denoising convolutional neural network (ADCNN) which integrates adaptive denoising units to remove noise while preserving sensitive fault features, eliminating the need for manual denoising function settings. In addition, we use Maximum Overlap Discrete Wavelet Packet Transform to separate out the interfering components of noisy signal. To further improve ADCNN's noise immunity, we adopt a strategy of gradually decreasing the number of channels and using large convolutional kernels. ADCNN was evaluated alongside the latest methods on two different datasets, and the results demonstrate that ADCNN outperforms other methods both accuracy and robustness. Therefore, our approach presents a promising solution for diagnosing mechanical systems in noisy environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [22] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [23] A Novel Method for Bearing Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
    Lin, Zhuonan
    Wang, Yongxing
    Guo, Yining
    Tong, Xiangrui
    Wei, Fanrong
    Tong, Ning
    SYMMETRY-BASEL, 2024, 16 (04):
  • [24] Fault Diagnosis of Rolling Bearing Using Convolutional Denoising Autoencoder and Siamese Neural Network With Small Sample
    Zhao, Xufeng
    Chen, Ying
    Yang, Mengshu
    Xiang, Jiawei
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5233 - 5244
  • [25] Fault migration diagnosis method for rolling bearing based on 2D convolutional neural network
    Wang, Dongliang
    He, Jiewei
    Chen, Xiangyuan
    Li, Ning
    Yang, Jin
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [26] Fault Diagnosis Method of Rolling Bearing Based on BP Neural Network
    Huang Zhonghua
    Xie Ya
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 647 - 649
  • [27] Bearing fault diagnosis method using CNN with denoising structure under strong noise background
    Wang, Junxiang
    Li, Hongkun
    Liu, Xuejun
    Sun, Bin
    Liu, Yefei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [28] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [29] A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network
    Xue, Feng
    Zhang, Weimin
    Xue, Fei
    Li, Dongdong
    Xie, Shulian
    Fleischer, Juergen
    MEASUREMENT, 2021, 176
  • [30] Bearing Fault Diagnosis Based on Adaptive Convolutional Neural Network With Nesterov Momentum
    Gao, Shuzhi
    Pei, Zhiming
    Zhang, Yimin
    Li, Tianchi
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9268 - 9276