Multi-source aggregated classification for stock price movement prediction

被引:52
|
作者
Ma, Yu [1 ]
Mao, Rui [2 ]
Lin, Qika [3 ]
Wu, Peng [4 ]
Cambria, Erik [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Econ & Management, 200 Xiaolingwei Rd, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Intelligent Mfg, 200 Xiaolingwei Rd, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Stock prediction; Event-driven investing; Multi-source aggregating; Sentiment analysis; MARKET PREDICTION; NEURAL-NETWORK; PUBLIC MOOD; SPILLOVER; MEDIA; NEWS;
D O I
10.1016/j.inffus.2022.10.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting stock price movements is a challenging task. Previous studies mostly used numerical features and news sentiments of target stocks to predict stock price movements. However, their semantics-based sentiment analysis is sub-optimal to represent real market sentiments. Moreover, only considering the information of target companies is insufficient because the stock prices of target companies can be affected by their related companies. Thus, we propose a novel Multi-source Aggregated Classification (MAC) method for stock price movement prediction. MAC incorporates the numerical features and market-driven news sentiments of target stocks, as well as the news sentiments of their related stocks. To better represent real market sentiments from the news, we pre-train an embedding feature generator by fitting the news to real stock price movements. Embeddings given by the pre-trained sentiment classifier can represent the sentiment information in vector space. Moreover, MAC introduces a graph convolutional network to capture the news effects of related companies on the target stock. Finally, MAC can predict stock price movements for the next trading day based on the aforementioned features. Extensive experiments prove that MAC outperforms state-of-the-art baselines in stock price movement prediction, Sharpe Ratio, and backtesting trading incomes.
引用
收藏
页码:515 / 528
页数:14
相关论文
共 50 条
  • [21] Multi-source domain adaptation for image classification
    Karimpour, Morvarid
    Noori Saray, Shiva
    Tahmoresnezhad, Jafar
    Pourmahmood Aghababa, Mohammad
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [22] Multi-source domain adaptation for image classification
    Morvarid Karimpour
    Shiva Noori Saray
    Jafar Tahmoresnezhad
    Mohammad Pourmahmood Aghababa
    Machine Vision and Applications, 2020, 31
  • [23] Enhanced stock price prediction with optimized ensemble modeling using multi-source heterogeneous data: Integrating LSTM attention mechanism and multidimensional gray model
    Liu, Qingyang
    Hu, Yanrong
    Liu, Hongjiu
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2024, 42
  • [24] Lightning Warning Prediction with Multi-source Data
    Alves, Marcos A.
    Oliveira, Bruno A. S.
    Maia, Willian
    Soares, Waterson S.
    Ferreira, Douglas B. da S.
    dos Santos, Ana P. P.
    Silvestrow, Fernando P.
    Daher, Eugenio L.
    Junior, Osmar P.
    2022 36TH INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP 2022), 2022, : 394 - 399
  • [25] Prediction of stock price movement based on daily high prices
    Novak, Marija Gorenc
    Veluscek, Dejan
    QUANTITATIVE FINANCE, 2016, 16 (05) : 793 - 826
  • [26] Multi-source data ensemble for energy price trend forecasting
    Braz, Douglas Donizeti de Castilho
    dos Santos, Moises Rocha
    de Paula, Marcos Basile Saviano
    da Silva Filho, Donato
    Guarnier, Ewerton
    Alipio, Lucas Penido
    Tinos, Renato
    Carvalho, Andre C. P. L. F.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [27] Two for the price of one: Multi-source funded landfill closings
    Plante, Thomas R.
    Public Works, 2000, 131 (06):
  • [28] Causality-Guided Multi-Memory Interaction Network for Multivariate Stock Price Movement Prediction
    Luo, Di
    Liao, Weiheng
    Li, Shuqi
    Cheng, Xin
    Yan, Rui
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 12164 - 12176
  • [29] Discriminative Sparse Filtering for Multi-Source Image Classification
    Han, Chao
    Zhou, Deyun
    Yang, Zhen
    Xie, Yu
    Zhang, Kai
    SENSORS, 2020, 20 (20) : 1 - 17
  • [30] Multi-Source Domain Adaptation for Visual Sentiment Classification
    Lin, Chuang
    Zhao, Sicheng
    Meng, Lei
    Chua, Tat-Seng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2661 - 2668