LIMIT CYCLES IN A SWITCHING LIENARD SYSTEM

被引:0
|
作者
Wang, Xiangyu [1 ]
Guo, Laigang [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, MOE, Beijing 100875, Peoples R China
来源
关键词
Lienard system; switching lines; Lyapunov constant; center; limit cycle;
D O I
10.3934/dcdsb.2022132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
ABSTRACT. In this paper, we consider a class of quadratic switching Lie ' nard systems with three switching lines. We give an algorithm for computing the Lyapunov constants of this system. Based on this method, we obtain a center condition and three limit cycles bifurcating from the focus (0, 0). Further, an example of quadratic switching systems is constructed to show the existence of six limit cycles bifurcating from the center. This is a new low bound on the maximal number of small-amplitude limit cycles obtained in such quadratic switching systems.
引用
收藏
页码:1503 / 1512
页数:10
相关论文
共 50 条
  • [21] ON THE EXISTENCE OF LIMIT CYCLES OF LIENARD EQUATION
    黄安基
    曹登庆
    Applied Mathematics and Mechanics(English Edition), 1990, (02) : 125 - 138
  • [22] Limit cycles in Lienard systems with saturation
    Lathuiliere, Thomas
    Valmorbida, Giorgio
    Panteley, Elena
    IFAC PAPERSONLINE, 2018, 51 (33): : 127 - 131
  • [23] Configurations of limit cycles in Lienard equations
    Coll, B.
    Dumortier, F.
    Prohens, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4169 - 4184
  • [24] Limit cycles of polynomial Lienard systems
    Llibre, J
    Pizarro, L
    Ponce, E
    PHYSICAL REVIEW E, 1998, 58 (04): : 5185 - 5187
  • [25] On the algebraic limit cycles of Lienard systems
    Llibre, Jaume
    Zhang, Xiang
    NONLINEARITY, 2008, 21 (09) : 2011 - 2022
  • [26] The hyperelliptic limit cycles of the Lienard systems
    Yu, Xiaolan
    Zhang, Xiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 535 - 539
  • [27] Limit cycles in generalized Lienard systems
    Yu, P.
    Han, M.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1048 - 1068
  • [28] ON THE LIMIT CYCLES OF A KIND OF LIENARD SYSTEM WITH A NILPOTENT CENTER UNDER PERTURBATIONS
    Yang, Junmin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (03): : 325 - 339
  • [29] Limit cycles in a Lienard system with a cusp and a nilpotent saddle of order 7
    Asheghi, R.
    Bakhshalizadeh, A.
    CHAOS SOLITONS & FRACTALS, 2015, 73 : 120 - 128
  • [30] On the independent perturbation parameters and the number of limit cycles of a type of Lienard system
    Yang, Junmin
    Yu, Pei
    Sun, Xianbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 679 - 692