Solving the Mostar index inverse problem

被引:2
|
作者
Alizadeh, Yaser [1 ]
Basic, Nino [2 ,3 ,4 ]
Damnjanovic, Ivan [2 ,5 ,6 ]
Doslic, Tomislav [7 ,8 ]
Pisanski, Tomaz [2 ,4 ]
Stevanovic, Dragan [9 ]
Xu, Kexiang [10 ]
机构
[1] Hakim Sabzevari Univ, Sabzevar, Iran
[2] Univ Primorska, FAMNIT, Koper, Slovenia
[3] Univ Primorska, IAM, Koper, Slovenia
[4] IMFM, Ljubljana, Slovenia
[5] Univ Nis, Fac Elect Engn, Nish, Serbia
[6] Diffine LLC, San Diego, CA USA
[7] Univ Zagreb, Fac Civil Engn, Zagreb, Croatia
[8] Fac Informat Studies, Novo Mesto, Slovenia
[9] Abdullah Al Salem Univ, Khaldiya, Kuwait
[10] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R China
关键词
Mostar index; Inverse problem; Realizability problem; Infinite realizability;
D O I
10.1007/s10910-024-01581-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A nonnegative integer p is realizable by a graph-theoretical invariant I if there exists a graph G such that I(G)=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(G) = p$$\end{document}. The inverse problem for I consists of finding all nonnegative integers p realizable by I. In this paper, we consider and solve the inverse problem for the Mostar index, a recently introduced graph-theoretical invariant which attracted a lot of attention in recent years in both the mathematical and the chemical community. We show that a nonnegative integer is realizable by the Mostar index if and only if it is not equal to one. Besides presenting the complete solution to the problem, we also present some empirical observations and outline several open problems and possible directions for further research.
引用
收藏
页码:1079 / 1093
页数:15
相关论文
共 50 条
  • [21] Inverse Problem for Sigma Index
    Gutman, Ivan
    Togan, Muge
    Yurttas, Aysun
    Cevik, Ahmet Sinan
    Cangul, Ismail Naci
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (02) : 491 - 508
  • [22] On Mostar Index of Trees with Parameters
    Hayat, Fazal
    Zhou, Bo
    FILOMAT, 2019, 33 (19) : 6453 - 6458
  • [23] Mostar index: Results and perspectives
    Ali, Akbar
    Doslic, Tomislav
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
  • [24] The Mostar index of Tribonacci cubes
    Wang, Yu
    Niu, Min
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [25] The weighted Mostar index of cacti☆
    Liu, Mengmeng
    Zhen, Qianqian
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 19 - 33
  • [26] MOSTAR INDEX OF BRIDGE GRAPHS
    Havare, Ozge Colakoglu
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (02): : 587 - 597
  • [27] On Cacti with Large Mostar Index
    Hayat, Fazal
    Zhou, Bo
    FILOMAT, 2019, 33 (15) : 4865 - 4873
  • [29] On Edge Mostar Index of Graphs
    Liu, Hechao
    Song, Ling
    Xiao, Qiqi
    Tang, Zikai
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (02): : 95 - 106
  • [30] Solving a directed-percolation inverse problem
    Deyo, Sean
    PHYSICAL REVIEW E, 2022, 106 (01)