A photoelectrochemical sensor based on In2O3/In2S3/ZnIn2S4 ternary Z-scheme heterojunction for ultrasensitive detection of dopamine in sweat

被引:0
|
作者
Zhou, Yu [1 ]
Xiao, Wei [1 ]
Tian, Gang [1 ]
Zhang, Suni [1 ]
Wei, Xiaoping [1 ]
Li, Jianping [1 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guangxi Key Lab Electrochem & Magnetochem Funct Ma, Guilin 541004, Guangxi, Peoples R China
关键词
Photoelectrochemical sensor; In2O3 multihollow microtubules; Energy band matching; Type-I heterojunction; Z-scheme heterojunction; Non-invasive test;
D O I
10.1007/s00604-024-06313-4
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel ternary heterojunction material In2O3/In2S3/ZnIn2S4 was synthesized, and a photoelectrochemical sensor was fabricated for the non-invasive test of dopamine (DA) in sweat. In2O3 multihollow microtubules were synthesized and then In2S3 was formed on their surface to construct a type-I heterojunction between In2S3 and In2O3. ZnIn2S4 was further introduced to form a Z-scheme heterojunction between In2S3/ZnIn2S4. Under photoexcitation, the photogenerated holes of In2O3 transferred to the valence band of In2S3, superimposed with the holes produced by In2S3, leads to a significantly higher photocatalytic oxidation capacity of In2O3/In2S3/ZnIn2S4 ternary composites than that of In2O3/In2S3. The Z-scheme heterojunction accelerates the transfer of photogenerated electrons accumulated on the type-I heterojunction. In the presence of DA, it is rapidly oxidized into polydopamine (PDA) by In2O3/In2S3, and the benzoquinone groups of PDA compete for the photogenerated electrons to reduce the current in the external circuit, whereby DA determination is achieved. Owing to the combination of type-I and Z-scheme heterojunction, the sensor showed extremely high sensitivity, with a detection limit of 3.94 x 10(-12) mol/L. It is one of the most sensitive methods for DA detection reported and has been applied to the determination of DA in human sweat.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Metal-Organic Framework Templated Z-Scheme ZnIn2S4/Bi2S3 Hierarchical Heterojunction for Photocatalytic H2O2 Production from Wastewater
    Dai, Dingliang
    Qiu, Jianhao
    Xia, Guanglu
    Tang, Yong
    Liu, Qiying
    Li, Yixin
    Fang, Biyao
    Yao, Jianfeng
    SMALL, 2024, 20 (38)
  • [42] Construction of an In2O3/Bi2S3 Z-Scheme Heterojunction for Enhanced Photocatalytic CO2 Reduction
    Sun, Miaofei
    Fan, Kai
    Liu, Chengyin
    Gui, Tian
    Dai, Chunhui
    Jia, Yushuai
    Liu, Xin
    Zeng, Chao
    LANGMUIR, 2024, 40 (24) : 12681 - 12688
  • [43] Photoelectrochemical immunoassay of carcinoembryonic antigen based on hollow In2O3/In2S3 nanocolumn
    Zhang, Zhishan
    Cai, Fan
    Wu, Shijia
    Luo, Shimu
    Lin, Yao
    Zheng, Tingjin
    ELECTROANALYSIS, 2023, 35 (12)
  • [44] S-induced Phase Change Forming In2O3/In2S3 Heterostructure for Photoelectrochemical Glucose Sensor
    Wang, Bingrong
    Zhang, Nan
    Wang, Yifeng
    Chen, Delun
    Qi, Junlei
    Tu, Jinchun
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (07)
  • [45] Engineering of direct Z-scheme ZnIn2S4/NiWO4 heterojunction with boosted photocatalytic hydrogen production
    Lv, Hua
    Wu, Hao
    Zheng, JinZe
    Kong, Yuanfang
    Xing, Xinyan
    Wang, Gongke
    Liu, Yumin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 666
  • [46] Construction and performance of a novel CuBi2O4/In2O3 Z-scheme heterojunction photocatalyst
    Fang, Cimei
    Su, Huaren
    Hu, Meng
    Jiang, Zao
    Xu, Longjun
    Liu, Chenglun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 160
  • [47] Revisiting Polytypism in Hexagonal Ternary Sulfide ZnIn2S4 for Photocatalytic Hydrogen Production Within the Z-Scheme
    Lee, Jinho
    Kim, Heelim
    Lee, Taehun
    Jang, Woosun
    Lee, Kyu Hyoung
    Soon, Aloysius
    CHEMISTRY OF MATERIALS, 2019, 31 (21) : 9148 - 9155
  • [48] Piezoelectric effect-assisted Z-scheme heterojunction ZnIn2S4/BaTiO3 for improved photocatalytic reduction of CO2 to CO
    Lu, Shanyue
    Zhang, Shengwei
    Li, Linlin
    Liu, Cong
    Li, Zhou
    Luo, Dan
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [49] Rational design of direct Z-scheme magnetic ZnIn2S4/ZnFe2O4 heterojunction toward enhanced photocatalytic wastewater remediation
    Gao, Qiang
    Wang, Zhi
    Li, Junxi
    Liu, Bin
    Liu, Chenguang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (06) : 16438 - 16448
  • [50] Rational design of direct Z-scheme magnetic ZnIn2S4/ZnFe2O4 heterojunction toward enhanced photocatalytic wastewater remediation
    Qiang Gao
    Zhi Wang
    Junxi Li
    Bin Liu
    Chenguang Liu
    Environmental Science and Pollution Research, 2023, 30 : 16438 - 16448